

Ultra-Morphological Structure and Molecular Characterization of *Contracaecum* larvae (Nematode) Parasitic of Some Fishes in Sulaimani Province, Kurdistan Region-Iraq

A Dissertation Submitted to the Council of the College of Science at the University of Sulaimani in partial fulfillment of the requirements for the degree of Doctor of philosophy of Science in Biology (Parasitology)

BY Younis Sabir Abdullah

B. Sc. in Biology (2003), University of Sulaimani M. Sc. in Biology\ Parasitology (2013), University of Sulaimani

> Supervised by Dr. Shamall M. A. Abdullah Professor

Dr. Ridha H. Hussein

Assistant Professor

December, 2020 17/12/2020 Sarmawaz, 2720 26/9/2720

بسمرالله الرّحمَنِ الرّحيم

وَاللَّهُ أَخْرَجَكُمْ مِنْ بُطُونِ أُمَّهَاتِكُمْ لا تَعْلَمُونَ شَيْئاً وَجَعَلَ لَكُمْ السَّمْعَ وَالأَبْصَارَ وَالأَفْئِدَةَ لَعَلَّكُمْ تَشْكُرُونَ ﴾

سورة النحل (اية ٧٨)

In the name of Allah, the Entirely Merciful, the Especially Merciful

And Allah has brought you out from the wombs of your mothers while you know nothing. And he gave you hearing, sight, and hearts that you might give thanks (to Allah) *

An-Nahl (Verse 78)

Supervisors Certification

We certify that the preparation of dissertation titled "Ultra-Morpho and Molecular Structure of *Contracaecum* larva (Nematode) Parasitic of Some Fishes in Sulaimani Province, Kurdistan Region-Iraq" accomplished by **Younis S. Abdullah**, was prepared under our supervision in the College of Science at the University of Sulaimani as partial fulfillment of the requirements for the degree of Doctor of Philosophy of Science in Biology (**Parasitology**).

Signature:

21

Name: **Dr. Shamall M. A. Abdullah** Title: **Professor** Date: **16/8/2020**

m

Signature:

Name: **Dr. Ridha H. Hussein** Title: **Assistant Professor** Date: **16/8/2020**

In view of the available recommendation, I forward this dissertation for debate by the examining committee.

Signature:

Name: Dr. Sirwan M. Muhammed Ameen Title: Assistant Professor (Head of Biology Department) Date: 17/11/2020

Examination Committee Certification

We certify that we have read this dissertation entitled "Ultra-Morphological Structure and Molecular Characterization of *Contracaecum* larvae (Nematode) Parasitic of Some Fishes in Sulaimani Province, Kurdistan Region-Iraq" prepared by Younis S. Abdullah, and as Examining Committee, examined the student in its content and in what is connected with it, and in our opinion it meets the basic requirements toward the degree of Doctor of Philosophy of Science in Biology (Parasitology).

Signature:

Name: **Dr. Adel T. Al-Saeed** Title: **Professor** Date: **17/12/2020**

(Chairman)

Signature: Name: **Dr. Samir J. Bilal** Title: Assistant Professor Date: 17/12/2020 (Member)

Signature:

Name: Dr. Sirwan M. Muhammed Ameen Title: Assistant Professor Date: 17/12/2020

(Member)

Signature:

Name: Dr. Shamall M. A. Abdullah Title: Professor Date: 17/12/2020 (Supervisor-Member)

Signature: Lucy A

Name: Dr. Luay A. Ali Title: Professor Date: 17/12/2020 (Member)

Signature

Name: Dr. Qaraman M. K. Koyee Title: Assistant Professor Date: 17/12/2020 (Member)

Signature: Name: Dr. Ridha H. Hussein Title: Assistant Professor Date: 17/12/2020 (Supervisor-Member)

Approved by the Dean of the College of Science.

Signature: Name: Dr. Soran M. Mamand Title: Assistant Professor Date: / /2021

Acknowledgments

At first the Praise and thanks giving to Allah, prayer and peace be upon the Prophet of Mercy Muhammad, peace is upon him and his household.

I would like to thanks my supervisors **Prof. Dr. Shamall M. A. Abdullah** for suggestion of the research project and his continuous guidance and valuable suggestion during the period of my study. My thanks are also due to my Co-supervisor **Assist. Prof. Dr. Ridha H. Hussein** for his joint supervision on my research. Thanks are due to Dean of College of Science, **Assist Prof. Dr. Soran M. Mamand** and the Head of Biology Department of the same College **Assist Prof. Dr. Sirwan M. Muhammed Ameen** for the study facilities provided.

I would like to record a word of gratitude and appreciation to Assist Prof. Dr. Yousif O. Muhammad and Dr. Mushir M. Qader in Geology Department College of Science University of Sulaimani for helping me in scanning electron microscopy. We are pleased to thank Dr. Jörg Freyhof from Museum für Naturkunde Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany for comparing our COX-1 data of *Alburnoides velioglui* with his data. I am pleased to thank Dr. Cüneyt Kaya, Recep Tayyip Erdogan University, Faculty of Fisheries and Aquatic Sciences, Turkey, for their help and conforming diagnosis of *Alburnoides velioglui*. Sincere thanks are also due to Prof. Dr. Furhan T. Muhaisen for his help for providing me with many valuable literatures.

Many thanks are also extended to **Dr. Taeeb A. Hama Sur** in Medical Laboratory Department in Technical College of Health in Sulaimani Polytechnic University for his great help in Molecular study. Also we thank **Mr. Mariwan H. Aziz** for his help in providing electro shocker device. Many thanks are also extended to some of my colleagues especially **Dr. Samir J. Bilal**; **Hassan M. Taufeeq**; **Dlshad A. Rashid** and **Kochar I. Mahmood** for their help. Finally, I have to thank my family which suffered a lot during the period of my study.

Abstract

During the current study, random samples of fishes were taken from 26 localities mostly in the Lesser Zab and Sirwan tributaries within Sulaimani Province, Kurdistan Region-Iraq. A total of 2122 freshwater fishes, belonging to 36 species in 26 genera and 10 families were collected randomly from January to the end of December 2018. The fishes were examined for *Contracaecum* larvae parasitizing them.

The study demonstrated that the most diverse family was Cyprinidae with 14 species (38.88%) followed by Leuciscidae with eight species (22.22%) then Nemacheilidae with six species (16.66%), then Xenocyprididae with two species (5.55%), Bagridae, Heteropneustidae, Mastacembelidae, Mugilidae, Siluridae and Sisoridae each with only one species (2.77% for each).

In addition, the study revealed that the most abundant and wide spread species recorded in this investigation was known *Cyprinion macrostomum* with prevalence 15.17%, followed by *Capoeta trutta* with the prevalence of 10.46%, then *Cyprinus carpio* as a third rank with the prevalence 9.18%. It was clarified that *Leuciscus vorax* was scarce with the prevalence 0.047%.

Furthermore, in the present investigation, *Alburnoides velioglui* was recorded for the first time in Iraq. Morphometric, meristic and molecular characterization of this fish were done. A mitochondrial cytochrome c oxidase subunit I (COX-1) was used as DNA barcode marker to clarify the taxonomic status of this fish. The genetic characterization of *A. velioglui* in the present study is available in the GenBank database under the accession number (MN893770).

Larval nematodes of the genus *Contracaecum* (n=140) were collected from 30 infected fishes belonging to 10 different fish species (Acanthobrama marmid, Arabibarbus grypus, Capoeta trutta, Carasobarbus luteus, Chondrostoma regium, Cyprinus carpio, Luciobarbus barbuls, L. esocinus, L. xanthopterus, and Mastacembelus mastacembelus). This investigation revealed that 35%, 0.81%, 0.90%, 4.49%, 5.76%, 2.05%, 0.92%, 1.92%, 19.35%, and 1.06% of the fish species were infected with Contracaecum larvae respectively.

The third larval stages (L3) were studied morphologically by optical microscope and ultra-structurally with scanning electron microscope. In addition, the molecular analysis study were done by amplification, sequencing and comparing different gene loci including internal transcribed spacers (ITS-1 and ITS-2) and cytochrome oxidase c subunit II (COX-2) of different isolated Contracaecum larvae. These sequences were also compared with closely related nematode sequences from the GenBank. Thirty sequences were obtained for this study from collected *Contracaecum* larvae. ITS-1, ITS-2 and COX-2 were amplified by polymerase chain reaction (PCR) and sequenced. The sequences of ITS-1, ITS-2 and COX-2 reveal that the collected Contracaecum larval specimens from all 10 infected fish species represented exactly one species (Contracaecum rudolphii type-B) based on identity percentage in Gene Bank database. Phylogenetic analysis of the genotypes were described. The genetic characterization of the parasite in the present study is available in the GenBank database. ITS-1, ITS-2 and COX-2 sequences obtained were deposited in GenBank and their accession numbers were demonstrated.

Abstract	Ι
Contents	III
List of Tables	V
List of Figures	VI
List of Apendices	VIII
Chapter One: Introduction	1
Chapter Two: Literature review	5
Importance of fish	5
The importance of Nematode	6
Family Anisakidae	7
Genus Contracaecum	8
Classification of <i>Contracaecum</i>	9
Life cycle of <i>Contracaecum</i>	9
Some study on <i>Contracaecum</i> larvae around the world	12
Study on <i>Contracaecum</i> larvae in Iraq	16
Study on Contracaecum larvae in Kurdistan Region of Iraq	22
Scanning electron microscopy study on <i>Contracaecum</i> larvae in	24
Iraq	
Chapter Three: Materials and Methods	25
Description of study area	25
Collection, Examination and Identification of Fishes	25
Fish Identification	28
Morphological features	28
Morphometric measurements	28
Meristic measurements	29
Molecular study of fish	31
Fixation, Preservation and Examination of <i>Contracaecum</i> larvae.	38
Light microscopy	38
Scanning electron microscopy	39
Molecular study of <i>Contracaecum</i> larvae	39
Ethical Approval and/or Informed Consent	42
Criteria of Infection	43
Chapter Four: Results and Discussion	44
Identification of fishes	44
Alburnoides	50
Alburnoides velioglui	50
Morphological study of A. velioglui	50
Molecular study of A. velioglui	53
Sequence and phylogenetic analysis of <i>A. velioglui</i>	54
Contracaecum larvae	51 57
Morphological identification of <i>Contractacum</i> larvae	50
	59

Contents

Ultra-morphological study of <i>Contracaecum</i> larvae	63
Molecular study of Contracaecum larvae	65
Sequence analysis of <i>Contracaecum</i> larvae	67
Phylogenetic analysis of <i>Contracaecum</i> larvae	79
Conclusions	88
Recommendations	89
References	91
Appendices	106
Abstract in Arabic	ĺ
Abstract in Kurdish	i

Table No.	Table Title	Page No.
1	List of sampling locations and their geographical	27
	specification in the present study	
2	List of fishes collected from different water bodies in	45
	Sulaimani Province with their numbers and status.	
3	Prevalence of Contracaecum larvae and mean of intensity	58
	among fish species	
4	Comparison of measurements of systematically important	62
	features in Contracaecum larvae in different fish species in	
	the present study (in millimeter)	
5	Accession numbers provided by NCBI for the collected	69
	Contracaecum larvae in different fish hosts in the present	
	study	
6	Contracaecum nematodes and specimens/accession number	80
	(ITS) of taxa used to build phylogenetic trees and the	
	nucleotide differences with the Contracaecum larvae	
	collected from the present study	
7	Contracaecum nematodes and specimens/accession number	81

List of Table

Contracaecum nematodes and specimens/accession number (COX-2) of taxa used to build phylogenetic trees and the nucleotide differences with the *Contracaecum* larvae collected from the present study

Figure No.	Figure Title	Page No.
1	Anterior parts of the digestive canal of some Anisakidae	8
2	Life cycle of Contracaecum	10
3	Third larval stage of Contracaecum larva	11
4	Map of Iraq	26
5	Morphometric measurements of fish	30
6	Merestic measurements of fish	31
7	Percentage composition of fish family collected in the present study	46
8	Alburnoides velioglui	52
9	PCR product of COX-1 sequences of Alburnoides velioglui	53
10	Phylogenetic tree of A. velioglui based on COX-1	56
11	Photomicrograph of <i>Contracaecum</i> larva in <i>Carasobarbus luteus</i>	60
12	Photomicrograph of <i>Contracaecum</i> larva in <i>Luciobarbus</i> xanthopterus	61
13	Scanning Electron micrograph of <i>Contracaecum</i> larva in <i>Carasobarbus luteus</i>	64
14	PCR product of ITS-1 sequences of <i>Contracaecum</i> larvae in different fish species	66
15	PCR product of ITS-2 sequences of <i>Contracaecum</i> larvae in different fish species	66
16	PCR product of COX-2 sequences of <i>Contracaecum</i> larvae in different fish species	67
17A	Nucleotide sequences alignment (ITS-1 region) of <i>Contracaecum</i> larvae in different fish species	71
17B	Nucleotide sequences alignment (ITS-1 region) of <i>Contracaecum</i> larvae in different fish species (continued)	72
18A	Nucleotide sequences alignment (ITS-2 region) of <i>Contracaecum</i> larvae in different fish species	73
18B	Nucleotide sequences alignment (ITS-2 region) of <i>Contracaecum</i> larvae in different fish species (continued)	74
19A	Nucleotide sequences alignment (COX-2 region) of <i>Contracaecum</i> larvae in different fish species	75
19B	Nucleotide sequences alignment (COX-2 region) of <i>Contracaecum</i> larvae in different fish species (continued)	76
20	Alignment of the ITS-1 and ITS-2 sequences representing genotype 1 (<i>Contracaecum rudolphii</i> B) from the present	78

List of Figures

study and genotype 2 (*Contracaecum rudolphii* A) sequences have been deposited in GeneBank

- 21 Phylogenetic relationships between *Contracaecum* larvae 82 from the present study and other *Contracaecum* species as inferred by maximum likelihood obtained from ITS-1. *Ascaris suum* was used as outgroup
- 22 Phylogenetic relationships between *Contracaecum* larvae 83 from the present study and other *Contracaecum* species as inferred by maximum likelihood obtained from ITS-2. *Ascaris suum* was used as outgroup
- 23 Phylogenetic relationships between *Contracaecum* larvae 84 from the present study and other *Contracaecum* species as inferred by maximum likelihood obtained from COX-2. *Ascaris suum* was used as outgroup

List of Appendices

Figure No.	Plate Title	Page No.
24	Pair wise alignment ITS-1 sequence of Contracaecum larva	106
	collected from Acanthobrama marmid, Query is the study or	
	sample sequence and Subject is the GenBank sequence.	
25	Pair wise alignment ITS-1 sequence of Contracaecum larva	107
	collected from Arabibarbus grypus, Query is the study or	
	sample sequence and Subject is the GenBank sequence.	
26	Pair wise alignment ITS-1 sequence of Contracaecum larva	108
	collected from Capoeta trutta, Query is the study or sample	
	sequence and Subject is the GenBank sequence.	
27	Pair wise alignment ITS-1 sequence of Contracaecum larva	109
	collected from Carasobarbus luteus, Query is the study or	
	sample sequence and Subject is the GenBank sequence.	
28	Pair wise alignment ITS-1 sequence of Contracaecum larva	110
	collected from Chondrostoma regium, Query is the study or	
	sample sequence and Subject is the GenBank sequence.	
29	Pair wise alignment ITS-1 sequence of Contracaecum larva	111
	collected from Cyprinus carpio, Query is the study or sample	
	sequence and Subject is the GenBank sequence.	
30	Pair wise alignment ITS-1 sequence of Contracaecum larva	112
	collected from Luciobarbus barbulus, Query is the study or	
	sample sequence and Subject is the GenBank sequence.	
31	Pair wise alignment ITS-1 sequence of Contracaecum larva	113
	collected from Luciobarbus esocinus, Query is the study or	
	sample sequence and Subject is the GenBank sequence.	
32	Pair wise alignment ITS-1 sequence of Contracaecum larva	114
	collected from Luciobarbus xanthopterus, Query is the study	
	or sample sequence and Subject is the GenBank sequence.	
33	Pair wise alignment ITS-1 sequence of Contracaecum larva	115
	collected from Mastacembelus mastacembelus, Query is the	
	study or sample sequence and Subject is the GenBank	
	sequence.	
34	Pair wise alignment ITS-2 sequence of Contracaecum larva	116
	collected from Acanthobrama marmid, Query is the study or	
	sample sequence and Subject is the GenBank sequence.	
35	Pair wise alignment ITS-2 sequence of Contracaecum larva	116
	collected from Arabibarbus grypus, Query is the study or	
	sample sequence and Subject is the GenBank sequence.	

36	Pair wise alignment ITS-2 sequence of Contracaecum larva	117
	collected from Capoeta trutta, Query is the study or sample	
	sequence and Subject is the GenBank sequence.	
37	Pair wise alignment ITS-2 sequence of Contracaecum larva	117
	collected from Carasobarbus luteus, Query is the study or	
	sample sequence and Subject is the GenBank sequence.	
38	Pair wise alignment ITS-2 sequence of Contracaecum larva	118
	collected from Chondrostoma regium, Query is the study or	
	sample sequence and Subject is the GenBank sequence.	
39	Pair wise alignment ITS-2 sequence of Contracaecum larva	118
	collected from Cyprinus carpio, Query is the study or sample	
	sequence and Subject is the GenBank sequence.	
40	Pair wise alignment ITS-2 sequence of Contracaecum larva	119
	collected from Luciobarbus barbulus, Query is the study or	
	sample sequence and Subject is the GenBank sequence.	
41	Pair wise alignment ITS-2 sequence of Contracaecum larva	119
	collected from Luciobarbus esocinus, Query is the study or	
	sample sequence and Subject is the GenBank sequence.	
42	Pair wise alignment ITS-2 sequence of Contracaecum larva	120
	collected from Luciobarbus xanthopterus, Query is the study	
	or sample sequence and Subject is the GenBank sequence.	
43	Pair wise alignment ITS-2 sequence of Contracaecum larva	120
	collected from Mastacembelus mastacembelus, Query is the	
	study or sample sequence and Subject is the GenBank	
	sequence.	
44	Pair wise alignment COX-2 sequence of Contracaecum larva	121
	collected from Acanthobrama marmid, Query is the study or	
	sample sequence and Subject is the GenBank sequence.	
45	Pair wise alignment COX-2 sequence of Contracaecum larva	122
	collected from Arabibarbus grypus, Query is the study or	
	sample sequence and Subject is the GenBank sequence.	
46	Pair wise alignment COX-2 sequence of Contracaecum larva	123
	collected from Capoeta trutta, Query is the study or sample	
	sequence and Subject is the GenBank sequence.	
47	Pair wise alignment COX-2 sequence of Contracaecum larva	124
	collected from Carasobarbus luteus, Query is the study or	
	sample sequence and Subject is the GenBank sequence.	
48	Pair wise alignment ITS-1 sequence of Contracaecum larva	125
	collected from Chondrostoma regium, Query is the study or	
	sample sequence and Subject is the GenBank sequence.	

49	Pair wise alignment COX-2 sequence of Contracaecum larva	126
	collected from Cyprinus carpio, Query is the study or sample	
	sequence and Subject is the GenBank sequence.	
50	Pair wise alignment COX-2 sequence of Contracaecum larva	127
	collected from Luciobarbus barbulus, Query is the study or	
	sample sequence and Subject is the GenBank sequence.	
51	Pair wise alignment COX-2 sequence of Contracaecum larva	128
	collected from Luciobarbus esocinus, Query is the study or	
	sample sequence and Subject is the GenBank sequence.	
52	Pair wise alignment COX-2 sequence of Contracaecum larva	129
	collected from Luciobarbus xanthopterus, Query is the study	
	or sample sequence and Subject is the GenBank sequence.	
53	Pair wise alignment COX-2 sequence of Contracaecum larva	130
	collected from Mastacembelus mastacembelus, Query is the	
	study or sample sequence and Subject is the GenBank	
	sequence.	

CHAPTER ONE INTRODUCTION

INTRODUCTION

Fish is an important source of food for human in the world. It is a healthy food being rich in essential nutrients like quality animal proteins, polyunsaturated fatty acids (PUFA) especially the omega 3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and micronutrients. There is a high tendency among people to consume fish due to its great health benefits (Mohanty *et al.*, 2019).

Most fish, regardless of geography, harbor a diversity of pathogenic organisms including viruses, bacteria, fungi and parasites to human and causes a great concern to human health when it is consumed raw or lightly preserved (Hoole *et al.*, 2001).

Nematodes are one of the most important parasitic animal taxa (Ruppert *et al.*, 2004). Nematodes from family Anisakidae, commonly named anisakids, are parasites of many water organisms, the low specificity in the choice of hosts (both intermediate and definitive) cause that their geographical worldwide distribution (Szostakowska *et al.*, 2005). The most widespread genera from this family are *Anisakis*, *Pseudoterranova*, and *Contracaecum* which they have similar life cycles. The third larval stage (L3) of *Contracaecum* is usually found in the body cavity, mesenteries, and branchial chambers of a wide range of fish species. In addition, this larva have been reported in great variety of invertebrates such as gastropods, cephalopods, copepods, echinodermis and chaetognaths (Norris & Overstreet, 1976), while the adult stage found in the intestine of piscivorous birds and mammals associated with fresh, brackish and sea water (Whitfield and Heeg, 1977; Anderson, 2000).

1

Nematodes are rarely life threatening to their fish hosts. They may however damage the parasitised organs and cause general poor health such as emaciation, reduced growth and reduced fecundity. The range and degree of these detrimental effects varies depending upon the nematode species involved, the intensity of infection, and whether the host is final or intermediate (Hoole *et al.*, 2001).

Anisakid larvae (L3) may accidentally infect human through eating raw, smoked, or undercooked fish such as sushi, sashimi, ceviche, and gravlax and leading to a sever disease known as anisakidosis (anisakiasis), a zoonotic disease characterized by stomach pains, fever, diarrhea and vomiting, particularly the species belonging to *Anisakis, Contracaecum* and *Pseudoterranova* (Oshima, 1987; Arslan *et al.*, 1995; Yagi *et al.*, 1996; Shamsi & Butcher, 2011). This disease has been reported worldwide, and it is endemic in Southeast Asia (Audicana & Kennedy, 2008; Mattiucci & Nascetti, 2008).

Valles-Vega *et al.* (2017) mentioned the first human case of contracaecosis in the medical literature in Germany in 1967, and the first human case of anisakidosis acquired from eating locally caught fish in Australia recorded from a 41-year-old woman (Shamsi & Butcher, 2011). Two cases of human infection with *Contracaecum* have been reported in Hokkaido island from Japan between 1980 and 1996 (Ishikura *et al.*, 1996), if compare human cases caused by *Anisakis* and *Pseudoterranova* with the number of cases caused by *Contracaecum* is quite small (Nagasawa, 2012). Although, this group of nematodes is harmful to humans, scientists use some species of Anisakidae nematodes (*Anisakis*) as a biological tag for host-stock characterization (Mattiucci *et al.*, 2008a).

The *Contracaecum* larvae were recorded for the first time in Iraq from ten fish species from different inland waters of Iraq by Herzog (1969). After this record these larvae were recorded continuously in many freshwater fish in different Iraqi water bodies by many researchers. So far, a total of 42 freshwater fish host species are known for *Contracaecum* spp. larvae as well as from five marine fish in Iraq (Mhaisen, 2019). Furthermore, a total of 21 fish host species are known for *Contracaecum* larvae in Kurdistan Region of Iraq (Mhaisen & Abdullah, 2017). However, research to date has not yet investigated the specific identification of *Contracaecum* larvae in fishes based on molecular approach in Iraqi waters, and this requiring further investigation. So, this study becomes the first molecular investigation on this group in Iraq.

Adult worms of *Contracaecum* spp. were detected from six species of aquatic birds: *Egretta alba*, *E. garzetta*, *Ardeola ralloides*, *Botaurus stellaris*, *Ardea purpurea* and *Ceryle rudis* from Bahr Al-Najaf depression (Al-Awadi *et al.*, 2010) without diagnosed at species level.

The main problems regarding diagnosis of this parasitic larval nematode in freshwater fish of Iraq can be summarized as follows:

- 1- Identification of nematodes based on morphometric and meristic of sex organs and their appendages in both male and female of nematode, hence the larva not reach the sexual maturity and the sex organs not developed in both sex.
- 2- There is no molecular genetic characterization according to current standards for accurate identification to support taxonomy of this nematode in Iraq.

The present study is a preliminary investigation toward molecular genetic characterization and description of *Contracaecum* larvae in Iraq, by

using a combined molecular and ultra-morphological approach (scanning electron microscopy) based on sequence data of well-identified adults and *Contracaecum* larval types in GenBank. Previous studies showed that this approach is useful for reliable identification of *Contracaecum* larvae to species level (Shamsi *et al.*, 2011).

The main purpose of this study is:

- To know the prevalence of *Contracaecum* larvae among fishes in Sulaimani Province and to discover the genetic diversity of *Contracaecum* larvae that widely distributed nematodes of fishes.
- 2- To know the relationship between these recorded parasites with those recorded internationally.
- 3- Identification of the freshwater fishes in Sulaimani Province, Kurdistan Region-Iraq and compared with those reported in the Iraqi literature and to report possible new fish species, and new locality records.
- 4- To search new fish species in this region and their phylogenetic relationship by using morphological and molecular data.

CHAPTER TWO LITERATURE REVIEW

LITERATURE REVIEW

Importance of fish

Fishes are cold-blooded vertebrates; they inhabit different kinds of environment ranging from deep water of ocean to boundless surface of the open sea and fast running stream, the muddy waters, brackish, estuaries, stagnant pools and under the ground in caves (Shammi & Bhatnagar, 2006). Fish have a global significance as a source of food, for sport, for their ornamental appeal, and as experimental models for research. The most important of fish are serving as food for human, their lipids, which usually contains high amount of omega-3 fatty acids (e.g. EPA and DHA), they are a good source of easily digestible protein, and its amino acid profile usually contains most of the essential amino acids which is required to humans for balanced diet. They are also rich source of fat-soluble and B-group vitamins. In addition, they possess a great economic, medicinal, and industrial, values as well as providing employment for millions of people in the world (Hoole *et al.*, 2001; Erkan & Bilen, 2010; Pal *et al.*, 2018).

The first taxonomic studies of ichthyofauna in Iraq started with Johann J. Heckel in 19th century. He described 17 species from Tigris River at Mosul City in northern Iraq (Jawad, 2012; Kaya *et al.*, 2016). There are a few works on ichthyofauna in Kurdistan Region of Iraq including the study of ichthyofauna in Lesser Zab by Al-Rawi *et al.* (1978) and Dokan and Derbandikhan Lakes by Ciepielewski *et al.* (2001); Abdullah (2006); Abdullah *et al.* (2007); Abdullah & Abdullah (2018) and Greater Zab by Agha (2017).

The knowledge concerning the fish fauna of Kurdistan Region of Iraq is limited to fish parasitic studies carried out by Abdullah & Rasheed (2004a;

2004b); Abdullah (2002; 2005); Bashê (2008); Shwani (2009); Nasraddin (2013); Abdullah & Abdullah (2013a; 2013b; 2015a; 2015b; 2016) and Bilal *et al.* (2017).

Recently new fish species are being described from this Region. For instance, Freyhof *et al.* (2014) described two new species *Paracobitis molavii* in Zalm Stream in Sulaimani Province and *Paracobitis zabgawraensis* in Rean Stream near Ziraran in Erbil Province. Freyhof *et al.* (2016) recorded *Eidinemacheilus proudlovei* a subterranean loach from an aquifer into an ephemeral spring flowed into a small stream, which belongs to the Tabeen drainage in Sulamani Province. Freyhof & Abdullah (2017) recorded two new loaches *Oxynoemacheilus gyndes* and *O. hanae* in headwater streams of the upper Sirwan in Sulamani Province. Also, Freyhof & Geiger (2017) recorded *Oxynoemacheilus zarzianus* in a spring fed stream in the Qalachulan River drainage in Sulamani Province. In this investigation, we have summarized the available information on the biodiversity of fishes in Sulaimany Province that were collected in one year alone.

Importance of Nematode

Nematodes are among the most abundant animals on earth, they commonly known as roundworms and belong to the phylum Nematoda. They are bilaterally symmetry, elongated and cylindrical in shape, tapering at each end and lacks body segmentation and they possess pseudocoel (Hoole *et al.* 2001; Gerald & Roberts, 2009). The nematodes show a very wide range of ecological adaptation. Most of them are free-living found in soil, fresh, brackish and sea waters, other are facultative or obligate parasites attacking both animals and plants (Anderson, 1988).

Nematodes represent the most frequent and the most important parasites of fishes in fresh, brackish, and marine environments throughout the world. They attack most body organs and parasitizing them as adults and larvae. Some nematode species are known as the agents of serious fish diseases causing considerable losses in fish cultures and in some regions and some of them cause important public health problems for human such as anisakidosis (anisakiasis), gnathostomosis or paracapillariosis (Moravec, 2007). The nematode parasites infect various tissues and organs of fish such as stomach, intestine, liver, gonads, visceral mesenteries, peritoneum body cavity, blood vessels, swim bladder, connective tissues, fins, orbits of the eye and brain. Most species of the nematodes in adult stage live in the alimentary canal except the family Philometridae which are found in body cavity, liver and gonads (Akhater, 2008).

The family Anisakidae has been universal distributed, it is found in marine fish in temperate and cold regions and few has been recording freshwater fish (Berland, 1991; Moravec, 1994).

Family: Anisakidae Skryabin and Karokhin, 1945

The Family Anisakidae is identified by their cuticle without spines or supplementary ridge-like or finger-like structures, esophagus with ventricle, either esophageal or intestinal caeca present or both. Blind processes are occasionally absent or several in number. They are parasites of freshwater and migratory fish.

The genus belong this family are determined by presence or absence and the number of intestinal caeca (Fig. 1). Anterior intestinal caecum present in *Procaecum*, posterior esophageal caecum present in *Raphidascaris*, two caeca present, intestinal pointing anteriorly and esophageal pointing posteriorly found in *Contracaecum*, intestinal canal without caeca found in *Anisakis* (Bykhovskaya-Pavlovskaya *et al.*, 1962).

Fig. (1): Anterior parts of the digestive canal of some Anisakidae according to Bykhovskaya-Pavlovskaya *et al.* (1962).
A= Anisakis; B= Raphidascaris; C= Procaecum, D= Contracaecum, E= Goezia

Genus: Contracaecum Railliet and Henry, 1912

The genus *Contracaecum* is charachterized by intestinal canal sends off two blind caeca at boundary between esophagus and midgut, esophageal caecum longer than intestinal caecum. Six labia present. Intermediate labia are relatively short and most half as long as main labia. Numerous forms with scoop-like depressions present on internal surface of labia. Male has pre-anal and post-anal papillae. Spicules are equal size. Vulva most often found in anterior half body. They are oviparous; their larvae parasitize freshwater fishes (Bykhovskaya-Pavlovskaya *et al.*, 1962).

Classification of Contracaecum

The classification of *Contracaecum* is shown below according to Schmidt & Roberts (2009).

Kingdom: Animalia Phylum: Nematoda Class: Chromadorea Subclass: Chromadoria Order: Rhabditida Suborder: Spirurina Infraorder: Ascaridomorpha Superfamily: Ascaridoidea Family: Anisakidae Subfamily: Contracaecinae Genus: Contracaecum

Life Cycle of Contracaecum

The life cycle of *Contracaecum* follows the general Anisakid nematode life cycle pattern, including eggs, four larval stages (L1–L4) and the adult stages in the final host (Fig. 2). The life cycle involves a variety of hosts that are transferred through the aquatic food chain (Anderson, 2000).

The nematode eggs are excreted through feces of final hosts and embryonate in the water, the developing larva undergoes two moults and attaining the third larval stage (L3). Both hatched L3 (Fig. 3) or those still

Fig. (2): Life cycle of *Contracaecum* according to Center for Diseases Control and Prevention (CDC) (https://www.cdc.gov/)

- A- Anterior part of the larva
- **B-** Head region of the larva
- C- Tail region of the larva.

a= anus; **bt**= boring tooth; **c**= cuticle; **eso**= esophagus; **esoc**= esophageal caecum; **int**= intestine; **intc**= intestinal caecum; **mo**= mouth opening; **rec**= rectum; **ta**= tail.

inside the egg shells can infect crustacean (copepods) and fish which both can serve as a paratenic hosts (Køie, 2001; Moravec, 2009). The various predatory fish species serve as paratenic hosts. Inside the paratenic hosts the larvae are capable of re-infecting the paratenic hosts without further molting. Consequently, piscivorous birds and mammals when eating the paratenic hosts may accumulate enormous of the larvae (Lile, 1998).

Some study on Contracaecum larvae around the world

The information about *Contracaecum* parasitize in fish around the world are very tremendous. For this reason, the present review will be limited to cover about the last two decades, and will cover only those which parasitize in fishes only. Although there are a few publications on the specific identification of the larval stages of *Contracaecum* in fishes from the world. The review in the present study is divided in to two categories as follows:

1- Optical microscopy study of Contracaecum larvae

Barson (2004) recorded *Contracaecum* larvae in the body cavity of catfish *Clarias gariepinus* from Lake Chivero in Zimbabwe. Bergmann & Motta (2004) isolated *Contracaecum* larvae from abdominal cavity of Mayan cichlid fish *Cichlasoma urophthalmus* in southern Florida in USA. Barson & Avenant-Oldewage (2006) noted *Contracaecum* larvae in the abdominal cavity of catfish *Clarias gariepinus* from the Rietvlei Dam near Pretoria, South Africa.

Nagasawa (2012) reviewed two main types of a single species of *Contracaecum* larvae in 13 species of marine teleost and six species of pinnipeds based on morphology under optical microscope, *C. osculatum* sensu lato and *C. osculatum* A, in Japan. Gholami *et al.* (2014) discovered

12

encysted *Contracaecum* larvae attached to the outer part of intestine of *Capoeta damascina* caught in the Kor River Basin, southwestern Iran.

During compared parasite communities study in two fish species (*Hoplias malabaricus* and *Hoplerythrinus unitaeniatus*), Alcântara & Tavares-Dias (2015) isolated *Contracaecum* larvae in both fishes which they collected them from Amazon River system in Brazil.

In USA, Valles-Vega *et al.* (2017) recorded *Contracaecum* larvae in mullet fish (*Mugil curema*) collected from Bahía de La Paz, Baja California Sur, Mexico. Ribeiro *et al.* (2017) observed third larval stage of *Contracaecum* in the viscera (mucosa of the stomach, mesentery, pancreas and peritoneal fat) of introduced fish in Brazil (*Clarias gariepinus*) collected from a lake in the disctrict of Tocos, in the city of Campos dos Goytacazes, State of Rio de Janeiro, Brazil.

During observation for parasitic nematodes Sorour & Hamouda (2019) recorded third larval stage of *Contracaecum* that attached to alimentary canal and mesentery of infected African sharp-tooth catfish (*Clarias gariepinus*) that collected in Lake Nasser in Egypt. Lima *et al.* (2019) reported *Contracaecum* larvae in Pyloric cecum, intestines, liver, mesentery and gonads of two exotic fish species *Acestrorhynchus pantaneiro* and *Trachelyopterus lucenai* collected from the Tramandaí River Basin in southern Brazil.

2- Scanning electron microscopy and Molecular study of *Contracaecum* larvae

In Poland, Szostakowska & Fagerholm (2007) recorded the third larval stage of *C. rudolphii* B from crucian carp *Carassius carassius* collected from Selment Wielki Lake in Mazury and two strains (*C. rudolphii* A and B) from Caspian round goby *Neogobius melanostomus* collected from a brackish-water region in Baltic Sea, Gdańsk Bay at the Polish coast by using molecular approach by amplifying and sequencing internal transcribed spacers (ITS-1 and ITS-2) regions. Shamsi & Aghazadeh-Meshgi (2011) used molecular approach for identification of *Contracaecum* laravae obtained from intestine and body cavity of barboid fishes caught in Parishan Lake, the largest freshwater lake in Iran. ITS-1 region of the larvae were amplified and sequenced (452 bp) and the molecular study indicated that the larvae were *C. multipapillatum*.

Abdul Jabbar *et al.* (2013) sequenced the ITS-1 and ITS-2 of the ribosomal DNA (rDNA) for *Contracaecum* larvae collected from three fish species (*Aldrichetta forsteri*, *Mugil cephalus* and *Pseudocaranx dentex*) in southern Western Australia. The ITS sequences determined the larva collected from *Aldrichetta forsteri* and *Mugil cephalus* were belong to *C. multipapillatum* while those collected from *Pseudocaranx dentex* was belongs to *C. ogmorhini*. Garbin *et al.* (2013) collected 16 *Contracaecum* L3 larvae isolated from anchovy fish (*Engraulis anchoita*) collected from Bahía Engaño, Chubut, Argentina. The entire larva sequenced for three genes: mitochondrial cytochrome oxidase-2 (COX-2), mitochondrial ribosomal RNA (rrnS), ITS-1 and ITS-2 of the nuclear ribosomal DNA region. The sequence alignments obtained from ITS-1 and ITS-2 regions of the rDNA

indicated *C. pelagicum*. In addition, the ultra-structural studies under scanning electron microscope (SEM) were carried out on L3 larvae.

Mattiucci *et al.* (2015) collected 272 *Contracaecum* larvae from some marine fish (*Chionodraco hamatus*, *Trematomus bernacchii*, *Trematomus hansoni*, *Trematomus newnesi*) collected from the natural Antarctic marine ecosystem. The larvae sequenced for COX-2 gene with 519 bp. The genetic analysis was revealed that the larvae belong to *C. osculatum*. In addition they recovered a significant genetic variation among the larvae of *C. osculatum* recovered in fish hosts, the sibling species were *C. osculatum* D and *C. osculatum* E.

Shamsi *et al.* (2017) recorded third larval stage of *Contracaecum* in the intestinal tissue of carp caught from Coonancoocabil Lagoon, New South Wales, Australia, and described genetically as *C. bancrofti*. Younis *et al.* (2017) isolated encysted third larval stage of *Contracaecum* from the body cavity of *Lates niloticus* and *Hydrocynus forskahlii* and free third larval stage in brancheal chamber of *Oreochromis niloticus* and *Tilapia galilaea* collected from Lake Nasser, Egypt. The ITS-1 and ITS-2 of nuclear ribosomal DNA from isolated larvae sequenced and phylogenetic analyses showed that the larval nematode belonged to *C. multipapillatum*. Also, light and scanning electron microscope (SEM) studies were done.

Zuo *et al.* (2018) sequenced the COX-1 and COX-2 genes in the third larval stage of *Contracaeum* collected from liver of Baltic fish (*Gadus morhua*) in Baltic Sea. The sequencing indicated that the larva belongs to *Contracaecum osculatum*. In addition, SEM was conducted for the larva. Shamsi *et al.* (2018) recorded the third stage larva of *Contracaecum* in eight fish species (*Carassius auratus*, *Melanotaenia fluviatilis*, *Misgurnus* anguillicaudatus, Cyprinus carpio, Gambusia holbrooki, Hypseleotris sp., Nematalosa erebi, Retropinna semoni) collected from Murrumbidgee River, South-eastern Australia. The nematode larvae were identified as *Contracaecum bancrofti* using a combined morphological and molecular approach. The ITS-1 and ITS-2 regions of ribosomal DNA used for the molecular study.

Molnár et al. (2019) recorded Contracaecum rudolphii type B larvae in bream Abramis brama collected from Balaton Lake in Hungary, and in common carp Cyprinus carpio collected from Hévíz Lake directly connected to Balaton Lake by using ITS as a genetic marker. Pekmezci & Yardimci (2019) recorded Contracaecum L3 larvae isolated from Mugil cephalus collected in the Aegean Sea in Turkey. The Contracaecum L3 larvae were specifically identified С. overstreeti as based on molecularly characterization of ITS, rrnS and COX-2 genes. Pinheiro et al. (2019) studied morphology, morphometry, prevalence and ultramorphology (using SEM) of Contracaecum larvae in cichilid fish (Astronotus ocellatus) collected in Tapajós River in the municipality of Santarém in Pará State, Brazil.

Study on Contracaecum larvae in Iraq

In Iraq, the first record of *Contracaecum* larvae was done by Herzog (1969) who studied 16 species of fishes collected from different inland water of Iraq, and isolated *Contracaecum* larvae in 10 different freshwater fishes, these were: *Arabibarbus grypus* (reported as *Barbus grypus*), *Carasobarbus luteus* (reported as *B. luteus*), *Heteropneustes fosilis*, *Leuciscus vorax* (reported as *Aspius vorax*), *Luciobarbus esocinus* (reported as *B. esocinus*), *L. xanthopterus* (reported as *B. xanthopterus*), *Mesopotamichthys sharpeyi*

(reported as *B. sharpeyi*), *Mystus pelusius*, *Planiliza abu*. (reported as *Mugil abu*) and *Silurus triostegus*.

Shamsuddin *et al.* (1971) published the second paper on fish parasite in Iraq and isolated *Contracaecum* larvae in *S. triostegus* and *P. abu* (reported as *M. abu*) collected from several local fish market in Baghdad in which the fishermen caught them from Amara, Habbaniyah, Kut Thar thar Lakes, and Tigris and Euphrates Rivers.

Mhaisen (1986) recorded *Contracaecum* larvae from 14 fish species in Sahtt Al-Arab River and the north west of the Arab Gulf. Mhaisen *et al.* (1986) isolated the same larvae from intestine, liver, gonads and body cavity of *C. luteus, A. vorax* and *L. abu* collected from Mehajeran Greek Western tributaries of Shatt Al-Arab River, South of Basrah city.

Ali *et al.* (1987) observed the third larval stage of *Contracaecum* from coelom of *Acanthobrama centisquama*, *C. macrostomus*, *H. fossilis*, and *Leuciscus cephalus* collected from Tigris River in Baghdad Province. Khalifa *et al.* (1987) found *Contracaecum* larva from the stomach wall of Jirri (*S. triostegus*) in several parts of Tigris River from Northwest of Baghdad City.

Ali *et al.* (1989) recorded *Contracaecum* larvae from *Planiliza abu* in Babylon fish farm from Hilla City. Khalifa (1989) isolated *Contracaecum* larvae in *Barbus grypus* and *B. xanthopterus* collected in some ponds in several parts of Baghdad and Samarra regions and Al-Tharthar Canal.

Balasem *et al.* (1993) found encysted *Contracaecum* larvae from kidney of *P. abu* and the body cavity of *H. fossilis* collected from Tigris River at Al-Zaafaraniya South of Baghdad, Iraq. Mhaisen *et al.* (1993) recorded *Contracaecum* larvae in some freshwater and marine fishes collected from Basrah Province including *Aspius vorax, Barbus grypus, B. luteus, B.* sharpeyi, B. xanthopterus, Heteropneustes fossilis, Liza abu, L. clussumieri, Mystus pellusius and Silurus triostegus.

Tahir *et al.* (1994) recorded the epidemiology of *Contracaecum* larvae in *Planiliza abu* collected from five different region of Al-Najaf Province (Al-Najaf City center, Al-Kufa, Al-Mikhshab, Al-Hurriah, and Al-Qadisyah). Rahemo & Al-Abbadi (1994) isolated it from body cavity and intestine of *P. abu* from Al-Gharaf River passing through Shatra Town from Thi-Qar district, South of Iraq.

Mhaisen *et al.* (1997) recorded *Contracaecum* larvae from *Aspius vorax* collected from Euphrates River in Anbar Province, Iraq. Mhaisen *et al.* (1999) found *Contracaecum* larvae from intestine of *Liza abu* collected from Al-Habbaniya Lake.

Rahemo & Al-Niaeem (2001) recorded one encysted *Contracaecum* larvae from external wall of European catfish (*Silurus glanis*) collected from Tigris River in Al-Rasheedya from Mosul City. Al-Nasiri *et al.* (2002) collected *Contracaecum* larvae from intestine wall, liver, spleen and gall bladder of common carp (*Cyprinus carpio*) from artificial lake at Baghdad Province. Al-Niaeem & Al-Azizz (2002) isolated *Contracaecum* larvae in *Barbus sharpeyi* from Qarmat Ali River north of Basrah City.

Abdu-Fraj & Ftohe (2008) collected *Contracaecum* larvae in the stomach of *Silurus glanis* caught in the Tigris River in Musul City. Al-Jadoa (2008) discovered the *Contracaecum* larvae in *P. abu* (reported as *Liza abu*) from a local drainage net from north of Al-Diwanyia Province. Al-Zubaidy (2009) found these larvae in mugilid fish (*P. abu*) from three different localities (Hilla River, Al-Furat fish farm and Al-Mahaweel Drain) in Babylon Province in the middle of Iraq, the larvae were found as a free in the body cavities, most often in the abdominal or pericardial cavity, some

encapsulated on the external walls of stomach, intestine, liver, heart, and gonads of fishes.

Al-Awadi & Mhaisen (2010) found encysted *Contracaecum* larvae from kidneys, liver and mesenteries of both *Aphanius dispar*, *Barbus grypus* in the body cavity of *Gambusia affinis* and in the intestine, kidneys, liver, mesenteries and spleen of *Liza abu* collected from Bahr Al-Najaf depression, Southwest of Al-Najaf Al-Ashraf City, middle of Iraq. Al-Saadi *et al.* (2010) isolated *Contracaecum* larvae from mesenteries and liver of *A. vorax*, intestinal wall of *B. grypus*, body cavity of both *B. sharpeyi* and *B. xanthopterus* and from the intestinal wall and gonads of *L. abu*. The fish samples were collected from Al-Husainia Creek, north east of Karbala Province, middle of Iraq.

Al-Alusi (2011) founded *Contracaecum* larvae in the body cavity of *C. carpio* and the external surface of intestine of *B. xanthopterus* and *A. vorax* which they collected from Euphrates River at Al-Haklania District, Al-Anbar Province.

Mhaisen *et al.* (2012) reported *Contracaecum* larvae in the intestine, liver and body cavity of *C. carpio* and *P. abu* collected from Al-Furat fish farm in Babylon Province. Mhaisen & Al-Nasiri (2012) listed the fish parasites of Salah Al-Deen Province included *Contracaecum* larvae isolated from body cavity, intestine, liver and gonads of seven host species including: *A. marmid, A. vorax, B. grypus, B. xanthopterus, C. regium, S. triostegus, Varicorhinus trutta.*

Awad & Al-Tameemi (2013) isolated *Contracaecum* larvae in the coelom of *Poecilia latipinna* which collected in the crop of pied kingfisher (*Ceryle rudis*) were collected from Al-Mashab Marsh north of Basrah Province. Eassa *et al.* (2014) recorded *Contracaecum* larvae in the digestive
tract of common carp (*C. carpio*) collected from three different regions (Qurna, Dayer and Abu Al-Khaseeb) in Basrah Province. Ali *et al.* (2014) recorded two types of third larval stages (L3) of *Contracaecum*. *Contracaecum* sp. 1 recorded from body cavity, internal organs and mesenteries of 20 fish species in different water bodies in Basrah Province including *Aphanius dispar*, *Arabibarbus grypus*, *C. luteus*, *M. sharpeyi*, *Luciobarbus xanthopterus*, *A. sellal*, *Carassius auratus*, *C. idella*, *C. carpio*, *H. fossilis*, *Johnius* (*Johnius*) *belangerii*, *L. vorax*, *L. abu*, *L. subviridis*, *M. mastacembelus*, *Mystus pelusius*, *Otolithes ruber*, *Silurus triostegus*, *Synaptura orientalis*, *Tenualosa ilisha*. While, *Contracaecum* sp. 2 larvae recorded from body cavity and mesentries of *H. fossilis* from Shatt Al-Arab River near Nahr Khooz Village.

Mhaisen *et al.* (2015) listed the *Contracaecum* larvae of fishes from the Euphrates River at Al-Musaib City, middle of Iraq and recorded the *Contracaecum* larvae from the intestine of *Alburnus orontis*, *Arabibarbus grypus*, *Carasobarbus luteus*, *Coptodon zillii*, *Leuciscus vorax*, *Luciobarbus xanthopterus*, *Mastacembelus mastacembelus*, *Mystus pelusius* and *Silurus triostegus*. Mohammad (2016) discovered *Contracaecum* larvae in the pericardial cavity of exotic fish (*Tilapia zillii*) that collected from Al-Dalmaj Marsh from Al-Diwaniya Province in the middle of Iraq and from central marshes of Thi Qar Province in south of Iraq. Al-Mayali & Al-Mahi (2016) isolated third larval stage of *Contracaecum* from intestine of *Liza abu* collected from Diwaniya River in Diwaniya.

Al-Kinanny & Al-Obaidy (2017) found *Contracaecum* larvae in the intestine of *Liza abu* collected from Euphrates River in The-Qar Province. Mhaisen *et al.* (2017) listed the parasite fauna of fishes from different marshlands and markets of Basrah Province and reported the *Contracaecum*

larvae from body cavity, mesenteries and different internal organs of *C. luteus*, *C. carpio*, *H. fossilis*, *L. vorax*, *M. sharpeyi*, *P. abu*, *Poecillia latipinna* and *S. triostegus*.

Al-Moussawi *et al.* (2018) isolated encapsulated *Contracaecum* larvae in the intestine wall of Asian catfish (*S. triostegus*) were caught from the Tigris River in Baghdad Province. Mhaisen & Rubaie (2018) listed the parasites of native fishes of Babylon Province and reported encysted third larval stage of *Contracaecum* in the intestine, body cavity, stomach, intestine, liver, heart and gonad of *A. orontis*, *A. grypus*, *C. luteus*, *C. zillii*, *L. vorax*, *L. xanthopterus*, and in the intestine of *M. mastacembelus*, *M. pelusius*, *P. abu* and *S. triostegus* from the Euphrates river at Al-Musaib City.

Mhaisen *et al.* (2018) listed the parasites of freshwater fishes of Salah Al-Din Province and recorded *Contracaecum* larvae from body cavity, viscera, liver body cavity, and muscular layer of stomach and external surface of intestine of *A. marmid*, *A. grypus*, *C. trutta*, *C. regium*, *L. vorax*, *L. xanthopterus* and *S. triostegus*.

Mhaisen (2019) listed the fish parasites of Thi-Qar Province in south of Iraq and recorded the *Contracaecum* larvae from body cavity and intestine of *C. luteus*, visceral cavity of *C. zillii*, body cavity and intestine of both *L. vorax* and *L. xanthopterus* body cavity and intestine of *P. abu* and body cavity and intestine of *S. triostegus*. Mhaisen *et al.* (2019) listed the fish parasites of Al-Diwaniyah Province and reported *Contracaecum* larvae in the intestine, body cavity, liver, spleen of *A. grypus*, *C. luteus*, *C. carpio*, *L. vorax*, *L. xanthopterus*, and *P. abu*.

Study on Contracaecum larvae in Kurdistan Region-Iraq

The first study of *Contracaecum* larvae in Kurdistan Region-Iraq was done by Ali (1989) who collected *Contracaecum* larvae in the liver, body cavity, intestine and intestinal wall of *Carasobarbus luteus* (reported as *Barbus luteus*) from Greater Zab River near Iski-Kalak, Erbil city. Abdullah (1990); Abdullah & Rasheed, (2004b) recorded large numbers of different stages of *Contracaecum* larvae were obtained from the stomach and intestine of *Cyprinus carpio, Luciobarbus esocinus* and *Arabibarbus grypus*, from coelom of *Luciobarbus subquincunciatus, Squalius lepidus* and *Luciobarbus kersin*, from liver and intestine of *Luciobarbus barbulus* and *Chondrostoma regium*, from liver of *Cyprinion macrostomum* and *Carasobarbus luteus*, and from coelom and gonad of *Luciobarbus xanthopterus* collected from Dokan Lake in Sulaimani Province.

Nawab Al-Deen (1994) isolated *Contracaecum* larvae from mesenteries of *Leuciscus vorax* (reported as *Aspius vorax*) from Lesser Zab River near Altun Kupri, Erbil Province.

Abdullah (2000) recorded *Contracaecum* larvae from intestinal wall of *L. esocinus* (reported as *Barbus esocinus*), *C. luteus* (reported as *B. luteus*) and *L. xanthopterus* (reported as *B. xanthopterus*), and in the liver of *A. grypus* (reported as *B. grypus*) and *C. carpio* collected from local market in Erbil City.

Abdullah (2002); Abdullah & Mhaisen (2011) made a survey on fish parasites from both Lesser Zab and Greater Zab River, *Contracaecum* larvae were recorded from body cavity of *A. marmid* from Lesser Zab and Greater Zab Rivers, from intestine and intestinal wall of *Capoeta damascina* (reported as *Barbus belayewi*). From *C. luteus* (reported as *B. luteus*), intestinal wall of *C. carpio, Garra rufa, H. fossilis,* liver, gonads and

intestine of *L. barbulus* (reported as *B. barbulus*), muscles of *Mastacembelus mastacembelus*, body cavity, gonads and liver of *Squalius lepidus* (reported as *Leuciscus lepidus*).

Abdullah (2004) recorded *Contracaecum* larvae from intestinal wall of *Planiliza abu* (reported as *Liza abu*) collected from Mortuka Stream from southeast of Erbil Province and from a fish farm pond located in south of Erbil Province.

Abdullah (2005) surveyed the parasites of 17 species of fishes from Darbandikhan Lake in Sulaimani Province and detected the third larval stage (L3) of *Contracaecum* in body cavity of *A. marmid*, body cavity, liver and intestine of *C. regium* (misspelled as *C. regius*), *H. fossilis*, stomach, intestine and external wall of intestine of *L. esocinus* (reported as *B. esocinus*), muscles of *M. mastacembelus*, intestine and liver of *S. cephalus* (reported as *L. cephalus*) from Darbandikhan Lake.

Rahemo *et al.* (2005) recorded encysted *Contracaecum* larvae from the liver of *S. cephalus* (recorded as *Leuciscus cephalus*) caught from Serchinar Stream in Sulaimani Province. Abdullah & Mhaisen (2006) recorded *Contracaecum* larvae from liver, intestine and external wall of intestine of *C. carpio* collected from Lesser Zab River.

Shwani (2009); Shwani & Abdullah (2010) recorded many encysted third larval stage of *Contracaecum* found in ovary and liver of *S. triostegus* collected from Greater Zab River near Guwer District southwest of Erbil City. Abubaker (2015) reported *Contracaecum* larvae in the intestine of *C. trutta* and *C. macrostomum* collected from Greater Zab River near Aski-Kalak, Erbil Province.

Scanning Electron Microscopy study on Contracaecum in Iraq

There is no any ultra-structural study of *Contracaecum* larvae except a single study were done by Rahemo & Nawab Al-Din (2009) used scanning electron microscopy (SEM) for observation of three nematode including *Contracaecum* larvae, that collected from *Acanthobrama marmid* and other fishes that collected from Tigris River. According to Mhaisen (2019) a total of 42 fish host species are known for *Contracaecum* larvae in Iraq including Kurdistan Region of Iraq. However, there is no detailed morphological study and a specific identification based on molecular characterization according to current standards for identification of this parasites.

CHAPTER THREE MATERIALS AND METHODS

MATERIALS AND METHODS

Description of study area

Sulaimani Province is a mountainous province in Kurdistan Region, located in the northeast of Iraq. It is situated between the latitudes of $35^{0}05'$ and $36^{0}30'$ and between longitudes of '44⁰ 25' and $46^{0}20'$ (Fig. 4). It is located close to the Iraqi-Iranian border. There are many water bodies in this province in addition to the two large rivers, namely, the Lesser Zab (Little Zab) and Sirwan Rivers which they pass through this province and both originate in Iran and they finally feed the Tigris River (Al-Saudi, 1976). The sampling areas were divided into eight area and 26 localities (Table 1).

I- Collection, Examination and Identification of Fishes

Fishes were caught weekly by pulsed DC electro-shock device (SAMUS 1000). The device was set up as follow: frequency of output pulses 50 Hz, duration of output pulses 5 milliseconds, amplitude of the output pulses 320V, output power 220W. This device just anesthetizes the fishes for a few seconds without harming the fishes or other water creatures. Also, gill netting, and hook were used (SAMUS 1000).

Fishes were kept in a cool box with river water and transferred to the laboratory of Parasitology, Department of Biology, College of Science, University of Sulaimani. The fishes were identified based on their morphometric and meristic characters, so the measurements made point to point never by projections, according to Beckman (1962), Kottelat & Freyhof (2007) and Coad (2010) and the scientific names for fishes were identified according to Froese & Pauly (2020).

B- Map of north Iraq, the spots showing the study area (Google map).

Table (1): 1	List of	sampling	locations	and	their	geographical	specification	in	the
present stud	ly								

Areas	Localities	Coordinates
Sulaimani city	Sarchnar	N 35.586029 ⁰ , E 45.381129 ⁰
Sharbazher	Awkurte	N 35.964140 ⁰ , E 45.396998 ⁰
	Bardbard	N 35.915020 ⁰ , E 45.367732 ⁰
	Kareza	N 35.78366 ⁰ , E 45.418174 ⁰
	Khewata	N 35.75105 ⁰ , E 45.7062 ⁰
	Kunamasi	N 35.79695 ⁰ , E 45.41370 ⁰
	Qashan	N 35.867406 ⁰ , E 45.403254 ⁰
	Wazha	N 35.750105 [°] , E 45.496155 [°]
Sharazwr	Darbandikhan lake	N 35.11315 ⁰ , E 45.70650 ⁰
	Kawta	N 35.095823 ⁰ , E 45.92079 ⁰
	Reeshen	N 35.354654 ⁰ , E 45.961988 ⁰
	Saraw	N 35.3722 ⁰ , E 45.8351 ⁰
	Shameran	N 35.117285 [°] , E 45.719307 [°]
	Taparezina	N 35.30135 ⁰ , E 46.0284 ⁰
	Zmkan	N 35.089628 ⁰ , E 45.918118 ⁰
Qaradagh	Astely Ashty	N 35.1634 ⁰ , E 45.2600 ⁰
	Hazar Kani	N 35.1713 [°] , E 45.2252 [°]
Garmyan	Banikhelan	N 35.063475 [°] , E 45.648604 [°]
	Kalar	N 34.649567 ⁰ , E 45.379714 ⁰
	Kulajo	N 34.452221 [°] , E 45.197145 [°]
	Sangaw	N 35.292413 [°] , E 45.160485 [°]
Bazyan	Basara	N 35.5001 [°] , E 45.0621 [°]
Dukan	Chami Rezan	N 35.8084 ⁰ , E 45.021689 ⁰
	Swrqawshan	N 35.872773 ⁰ , E 44.944338 ⁰
	Tabin	N 35.8336 ⁰ , E 45.104544 ⁰
Ranya	Darbany Ranya	N 36.216218 ⁰ , E 44.99143 ⁰

Some unrecognized fishes, after anesthesia (by electro-shock device), were fixed in 5% formalin and stored in 70% ethanol, a pieces of its' muscle were directly fixed and stored in 99% ethanol, at room temperature for molecular studies (Freyhof *et al.*, 2016).

Fish Identification

Fishes can be identified according to morphological features and/or molecular based identification.

1- Morphological features

Fishes are primarily classified according to morphological characters such as body shape, mouth structures, mouth position, types of caudal fin, types of fish scale, color, size, presence or absence of scales, barbel etc. The morphological characteristics for the fish species identification based on two main criteria:

A- Morphometric measurements

Morphometric measurement refers to the quantitative analysis of fish form (shape). Morphometric characters are measurable characters of a fish and they have an important value in fish identification. All measurements were to the nearest 0.1 mm using dial calipers. Measurements were taken on the left side. All measurements were taken in a straight line and not over the curve of the head or body (Fig. 5) (Freyhof & Abdullah, 2017).

The basic measurements include:

- 1- Total length.
- 2- Fork length.
- 3- Standard length.
- 4- Pre-dorsal length

- 5- Post dorsal length
- 6- Head length
- 7- Body depth
- 8- Snout length
- 9- Eye diameter
- 10- Postorbital length
- 11- Length of dorsal fin
- 12- Length of pectoral fin
- 13- Length of pelvic fin
- 14- Pre-pelvic length
- 15- Pre-anal length
- 16- Length of anal fin
- 17- Depth of caudal peduncle
- 18- Length of caudal peduncle
- 19- Length of base of anal fin
- 20- Length of base of dorsal fin
- 21- Inter-orbital width
- 22- Dorsal head length

B- Meristic measurements

According to Kottelate & Freyhof (2007), most fish species can be adequately described by meristic (countable) characters (Fig. 6) such as:

- 1- Scale counts (e.g. lateral line scales, transverse scales between lateral line and origin of dorsal fin ...etc.)
- 2- Numbers of gill rakers
- 3- Number of vertebrae
- 4- Fin ray counts (dorsal, pelvic, anal ...etc.)

- 5- Pharyngeal tooth formula
- 6- Presence and number of barbels
- 7- Fin numbers and positions

Fig. (5): Morphometric measurements of fish according to Kottelate and Freyhof (2007).

A= anal fin; C= caudal fin; D= dorsal fin; P= pectoral fin; V= pelvic fin; LL= lateral line; a= total length; b= standard length; c= predorsal length; d= postdorsal length; e= head length; f= snout length; g= eye diameter; h= postorbital length; i= dorsal fin length; j= pectoral fin length; k= pelvic fin length; l= pelvic length, m= preanal length; n= anal fin length; o= caudal peduncle depth; p= caudal peduncle length; q= base of anal fin length; r= base of dorsal fin length; s= interorbital width; t= dorsal head length.

Fig. (6): Meristic measurement of fish according to Kottelate and Freyhof (2007). A= lateral line scales; B= transverse scales between lateral line and origin of dorsal fin; C= transverse scales between lateral line and midline of belly; D= transverse scales between lateral line and origin of anal fin; E= circumpedunclar scales; F= predorsal scales; Short arrow= last scale on body and first scale on caudal fin.

2- Molecular Study of fish

A- DNA extraction

In order to assess DNA analysis of the collected fish (*Alburnoides velioglui*), four specimens of this fish species fixed in 99% ethanol (the specimens were collected from Zalm Stream near Tapazerina Village) and were analyzed molecularly. Prior to molecular studies, each specimen was identified on the basis of morphometric and meristic characters.

Genomic DNA was extracted from individual fish muscle tissues using QIAamp[®] DNA Mini Kit. According to the manufacturer's protocols as follow:

Procedure

 The fish muscle (≤ 25 mg) were cut into small pieces and placed in a 1.5 ml microcentrifuge tube. Added 180 µl of tissue lysis buffer (ATL buffer) and 20 µl protenase K, mixed by vortex and incubated at 56°C for 1-3 hours until completely lysed.

Note: the mixture mixed by vortex during incubation to aid the digestion (lysis) process.

- Two hundred microliters (200 µl) of lysis buffer (AL buffer) added. Mixed thoroughly by vortex for 15 seconds.
- The mixture incubated at 70°C for 10 minutes. Briefly centrifuged the tube to remove drops from lid.
- 4) Two hundred micro liters (200 µl) ethanol (96-100%) added. Mixed by vortex for 15 seconds. Briefly centrifuged the tube to remove drops from the lid.
- 5) The mixture pipetted on to the QIAamp Mini spin column (in a 2 ml collection tube). Centrifuged at 8,000 rpm for 1 minute. The flow-through and collection tube discarded.
- 6) The QIAamp Mini spin column placed in a new 2 ml collection tube and 500 μl washing buffer 1 (AW1 buffer) added. Centrifuged at 8,000 rpm for 1 minute. The flow-through and collection tube discarded.
- 7) The QIAamp Mini spin column placed in a new 2 ml collection tube and 500 µl washing buffer 2 (AW2 buffer) added. Centrifuged at full speed (14,000 rpm) for 3 minutes. The flow-through and collection tube discarded.

Note: The QIAamp Mini spin column placed in a new 1.5 ml microcentrifuge tube and centrifuged at full speed (14,000 rpm) for 1 minute. This eliminates the chance of possible buffer AW2 carryover.

8) The QIAamp Mini spin column placed in a new 1.5 microcentrifuge tube. 100 µl Elution buffer (AE buffer) or distilled water added and incubated at room temperature for 1 minute. Centrifuged at 8,000 rpm for 1 minute to elute the DNA.

Note: step 8 was repeated for increased DNA yield with a further 100 μ l AE buffer or distilled water (QIAamp[®] DNA Mini Kit).

B- DNA amplification

The polymer chain reaction technique (conventional PCR) was used to amplify the cytochrom c oxidase I (COX-1) gene using primers, forward FishF1-(5'-TCAACCAACCACAAAGAACATTGGCAC-3') and reverse FishR1-(5'-TAGACTTCTGGGTGGCCAAAGAATCA-3') designed by Ward *et al.* (2005).

The PCR reactions (in a volume of 30 µl) was performed in 25 mM Tris-HCl, pH 9.0, at 25°C, 50 mM KCl, 2 mM MgCl₂, 0.1 mg/ml gelatin, 200 µM de dATP, dGTP, dTTP, 100 µM [α 32-P]dCTP (0.05 µCi/nmol) and 12.5 µg activated salmon sperm DNA and 10 pmol of each primer and 1.5 U *Taq* polymerase (Canvax Biotech, S.L.). The PCR reactions were done in a thermocycler (Applied Biosystems 2720, USA) using the following cycling instructions: 94°C for 5 min (initial denaturation), 35 cycles of 94°C, 30 sec (denaturation), 55°C, 30 sec (annealing), 72°C, 30 sec (extension) and a final extension of 72°C for 7 min, 4°C ∞. Two microliters of genomic DNA and water free deionized distilled water (ddH₂O) were added to each PCR reaction.

C- Gel Electrophoresis

All PCR products obtained from thermocycler machine were verified on a 2% agarose gel with power supply 80V for 30 minutes.

The Materials and Equipment Used

- 1) Agarose powder.
- 2) 1X TAE buffer (Tris-Acetate EDTA buffer).
- 3) DNA stain (Good ViewTM) (SBS Genetech Beijing, China).
- 4) Electrophoresis equipment.

5) 6X Gel loading dye (50 mM EDTA, 0.2% SDS, 50% glycerol, 0.05% w/v bromophenol blue).

6) 1Kb DNA ladder (Vivantis, Malaysia).

Preparation of 50X TAE buffer (0.04 M, pH 8.5)

- 1) 800 ml of dH2O prepared in a suitable container.
- 2) 242 g of Tris base (SBS Genetech Beijing, China) added to the distilled water.
- 3) 18.61 g of Disodium EDTA added to the mixture.
- 4) 57.1 g of Acetic acid added to the mixture.
- 5) Distilled water added until the volume is reached 1L.

Procedure

1) 300 ml 1X TAE prepared (Prepared from the 50X stock of TAE by dissolving 1ml of the stock in 49 ml of autoclaved distilled water).

2) For a 2% w/v gel, 2 g agarose added to 100 ml 1X TAE buffer.

3) The solution heated to boiling in the microwave to dissolve the agarose, until the agarose gel becomes clear in texture.

4) 5 μ l of DNA stain (Good ViewTM) (SBS Genetech Beijing, China) added to the dissolved agarose and mixed gently.

5) The combs fixed into electrophoresis tray, and then poured the melted agarose onto the electrophoresis tray box.

6) Let the gel to cool in room temperature. It became solid and looked like cloudy.

7) The combs removed carefully, and put the gel into the electrophoresis box, 1X TAE (electrophoresis buffer) poured over the gel until covered the wells properly.

8) 6 μ l of the prepared samples (5 μ l of product and 1 μ l of 6X loading dye) added for each well. The samples should carefully place into adjacent wells by using a micropipette and a steady hand.

9) The samples were electrophoresed at 80 V for 30 min.

10) The gel removed from the box carefully, and then put into a gel documentation system, $SMARTDOC^{TM}$ blue light box (ACCURISTM instrument).

11) Protective glasses wore or covered the light box with protective shield when the blue light is on, then exposed the gel to camera to took a picture of the bands.

12) The genome size detected by comparing the obtained band with the 1 kb DNA ladder (Vivantis, Malaysia) that applied on the gel plate. The expected size of the PCR amplicon was 655 bp for *Alburnoides velioglui* (COX-1).

D- Gel purification

After detecting the DNA bands (amplicons) on the gel, the amplicon were purified using EasyPure® Quick Gel Extraction Kit (TRANSGEN BIOTECH), according to the manufacturer's protocols as follow:

Procedure

 The DNA fragments (amplicon) were cut from the gel using a razor blade. The gel slice weighted, and put the gel slice into a 1.5 ml eppendorf tube.

Note: the gels were cut into as small pieces as possible, to ensure the gel to be completely dissolved.

2) 3 volume of gel solubilization buffer (GSB) added to 1 volume of gel $(100 \text{ mg} \ge 100 \text{ }\mu\text{l})$. Incubated at 55 °C for 6-10 minutes until the gel slice has completely dissolved. The tube mixed every 2-3 minutes to help dissolve the gel during the incubation.

Note: once the gel is completely dissolved, watch the color of solution. The color of solution should be the same as GSB.

- 3) When the solution temperature fell back to room temp., transferred the solution to spin column. Incubated for 1 minute at room temp., then centrifuged 10,000 rpm for 1 minute. The flow-through discarded.
- 4) 650 µl of Wash buffer (WB) added, centrifuged at 10,000 rpm for 1 minute. The flow-through discarded.
- 5) The empty column centrifuged at 10,000 rpm for 1-2 minutes to remove the residual WB.
- 6) The spin column placed in a clean 1.5 ml microcentrifuge tube. 30-50 μl of Elution buffer (EB) or sterile distilled water added directly to the center of the spin column. Incubated the column at room temperature for 1 minute. Centrifuged at 10,000 rpm for 1 minute to elute the DNA. The purified DNA is ready to use or can be stored at -20°C (EasyPure® Quick Gel Extraction Kit).

E-DNA sequencing

The resulted products (purified amplicons) sent to the Macrogen Company in South Korea for nucleotide sequence analyses by a dideoxy termination method using Genetic analyzer 3500, an Applied Biosystems (USA) DNA Sequencer in the two directions (forward and reverse) by the same PCR-used primers.

F- Computer based sequence analysis

The resulted COX-1 sequences (forwards) were compared with their complements (reverses) and then adjusted using online software tool (bioinformatics.org\sms\rev_comp.html) to obtain reverse complement. Then the resulted sequences were aligned to each other using multiple sequence alignment program by using the online software tool CLUSTALW (genome.jp/tools-bin/clustalw) to get the most homologous sequences (one sequence). Subsequently, the obtained sequence put into the NCBI Blast program for homology search (http://www.ncbi.nlm.nih.gov/).

The sequence results of COX-1 fragments obtained from four *Alburnoides velioglui* were installed into the MEGA X version 10.7.1 software program (Kumar *et al.*, 2018). To unify the length of the sequences, the common 605 bp length of COX-1 segment was selected and used for phylogenetic analysis to determine the most appropriate sequence evolution model for the given data, treating gaps and missing data with the partial deletion option. The sequences were aligned using CLUSTALW alignment for constructing the trees of evolutionary development. The trees of all isolated species were constructed based on the Maximum Likelihood (ML) method and Tamura-Nei model (Tamura & Nei, 1993).

37

II- Fixation, Preservation and Examination of Contracaecum larvae

The fishes were examined for encysted and free *Contracaecum* larval nematode parasites. The fishes were opened from the ventral side. Body cavity, stomach, spleen, liver, kidneys, heart, muscles, swim bladder and gonads were all examined for presence of larval *Contracaecum* cysts. The gastrointestinal tract was dissected out from the rectum to the esophagus and opened longitudinally and examined internally and externally carefully under dissecting microscope (Amlacher, 1970).

1- Light microscopy (LM)

The encysted *Contracaecum* larvae were collected from different organs and washed with normal saline solution (0.9%) in a glass petri dish, with the aid of very fine needles tear them and they were fixed in hot 4% formalin solution (60°C) for relaxing their bodies and stored in 70% ethanol. A small piece of the mid-body of some larvae were excised for molecular study (Shamsi & Aghazadeh-Meshgi, 2011) and the rest of the larval nematodes were cleared with glycerine 5%, 10%, 50% (each for 1 hr.) and 100% (for 1-2 hr.) then mounted in Jelly glycerine (Moravec *et al.*, 2009; Moravec & Yooyen, 2011).

All measurements of parasite were made with an eyepiece ocular micrometer (Olympus, Japan) and given in millimeters. Photos were taken with Sony Optical Steady Shot Digital camera model DSC-W570, 16.1 mega pixels. The detected parasites were identified according to their morphology and key features and descriptions of Bykhovskaya-Pavlovskaya *et al.* (1962); Hoffman (1998); Anderson (2000); Shamsi *et al.* (2011).

2- Scanning Electron Microscopy (SEM)

The larvae were removed from the cyst for scanning electron microscopy (SEM) study, specimens were fixed in 4% (v/v) hot formalin solution (60°C), then preserved in 70% (v/v) ethanol and later they were post fixed in 1% osmium tetroxide (in phosphate buffer), dehydrated through a graded acetone series with ethanol (1:1), (1.5-0.5) and absolute acetone, 15 minutes for each concentration. For drying a critical-point method was used by shaking the samples for 24 hours in centrifuge to pulled out the acetone, then embedded on the targets and sputter-coated with gold (Moravec *et al.*, 2009; Moravec & Yooyen, 2011). The specimens were examined in Geology Department, College of Science, University of Sulaimani by using a FEI Quanta 400 SEM at an accelerating voltage of 25 kV.

3- Molecular Study of Contracaecum larvae

A- DNA extraction

Prior to the molecular studies, each specimen was identified on the basis of morphological characteristics under an optical microscope. Genomic DNA was extracted from mid piece of individual larvae after being preserved directly in absolute ethanol (99%). A total of 30 larvae (3 for each infected fish species) were prepared for molecular study. The genomic DNA was extracted by using a QIAamp[®] DNA Mini Kit with slight modifications. In brief, the mid piece of individual larval parasites were cut into small pieces, digested for 1-3 h at 56°C with proteinase K in ATL buffer and eluted in 50 µl of AE buffer (QIAamp[®] DNA Mini Kit).

B- DNA amplification, Gel purification and Sequencing

The PCR technique (conventional) was used to amplify the ITS-1, ITS-2, and COX-2 regions. The specific primer sets, forward SS1F (5'-GTTTCCGTAGGTGAACCTGCG-3') (5'and NC13R reverse, SS2F GCTGCGTTCTTCATCGAT-3'), forward (5'-TTGCAGACACATTGAGCACT-3') (5'and NC2R reverse TTAGTTTCTTTTCCTCCGCT-3') (Shamsi et al., 2008), forward 210F (5'-CACCAACTCTTAAAATTATC-3') and 211R (5'reverse TTTTCTAGTTATATAGATTGGTTCAT-3') (Nadler & Hudspeth, 2000) were used to amplify the two nuclear ribosomal markers (ITS-1 and ITS-2) and cytochrome oxidase II (COX-2), respectively.

The PCR reaction (in a volume of 30 µl) was performed in 25 mM Tris-HCl, pH 9.0 at 25°C and contained 50 mM KCl, 2 mM MgCl₂, 0.1 mg/ml gelatin, 200 µM dATP, dGTP and dTTP, 100 µM [a32-P] dCTP (0.05 μCi/nmol), 12.5 μg of activated salmon sperm DNA, 10 pmol of each primer and 1.5 U Taq polymerase (Canvax Biotech, S.L.). The PCR reactions were carried out in a thermocycler (Applied Biosystems 2720, USA) using the following cycling instructions: 94°C for 5 min (initial denaturation), 35 cycles of 94°C, 30 sec (denaturation), 55°C, 30 sec (annealing), 72°C, 30 sec (extension) and a final extension of 72°C for 7 min, followed by holding at 4°C. Two microliters of genomic DNA (20-40 ng) in nuclease-free deionized distilled water were added to each PCR reaction. Samples with fish genomic DNA (extracted from muscle) were included in the PCR as negative controls; no amplicons were produced from these samples. Five microliters of each PCR product was examined on a 2% w/v agarose gel, stained with DNA stain (Good ViewTM SBS Genetech Beijing, China) with power supply 80V for 30 minutes and photographed using a gel

documentation system. A 1000 bp DNA ladder (Vivantis, Malaysia) was used. The expected size of the PCR amplicon was 530 bp for *Contracaecum* larvae (ITS-1), 430 bp for ITS-2 and 629 bp for COX-2.

The amplicon were then purified using the EasyPure[®] Quick Gel Extraction Kit (TRANSGEN BIOTECH), according to the manufacturer's protocols. The resulting products were sent to Macrogen in South Korea for nucleotide sequence analysis by a dideoxy termination method using a Genetic Analyzer 3500 DNA sequencer (Applied Biosystems, USA) in both directions (forward and reverse) using the same PCR primers.

C- Computer based sequence analysis

The resulted ITS-1, ITS-2 and COX-2 sequences (forwards) were compared with their complements (reverses) and then adjusted using online software tool (bioinformatics.org\sms\rev_comp.html) to obtain reverse complement. Then the resulted sequences were aligned to each other using multiple sequence alignment program by using the online software program CLUSTALW (genome.jp/tools-bin/clustalw) to get the most homologous sequences (one sequence). Subsequently, the obtained sequence put into the NCBI Blast program for homology search (http://www.ncbi.nlm.nih.gov/). In addition, the multiple sequence alignment were done for each obtained sequences from each gene (ITS-1, ITS-2 and COX-2) in all *Contracaecum* larvae collected in the 10 different fish hosts by using the online software program CLUSTALW (genome.jp/tools-bin/clustalw), in order to obtain nucleotide variation among *Contracaecum* larvae in different fish host.

D- Phylogenetic analysis

For the phylogenetic study, the sequence data of ITS-1, ITS-2 and COX-2 fragments obtained from *Contracaecum* larvae collected from all different fish host species were installed into the MEGA X version 10.7.1 software program (Kumar *et al.*, 2018). To unify the length of the sequences, the common 447, 268 and 475 bp length of ITS-1, ITS-2 and COX-2 segments respectively were selected and used for phylogenetic analysis to determine the most appropriate sequence evolution model for the given data, treating gaps and missing data with the partial deletion option. The sequences were aligned using CLUSTALW alignment for constructing the trees of evolutionary development. The trees of all isolated species were constructed based on the Maximum Likelihood (ML) method and Tamura-Nei model (Tamura and Nei, 1993).

Ethical Approval and/or Informed Consent

The care of experimental animals was consistent with Republic of Iraq animal welfare laws, guidelines and policies approved by University of Sulaimani Local Ethics Committee (Permit reference number 122/2020). All fishes were collected from both Lesser Zab and Sirwan River drainages, with required permissions of the Directorate Police of Forest and Regional Sulaimani Province (Permit reference number 1060/2018).

Criteria of Infection

The ecological terms (prevalence and mean intensity of infection) were used in the present study based on the terminology of Margolis *et al.* (1982):

A- Prevalence of Infection:

The percentage of investigated fish infected with a particular parasite species per the total number of host examined.

B- Mean intensity of infection:

Mean number of particular parasite species per infected host in a sample.

CHAPTER FOUR RESULTS AND DISCUSSION

RESULTS AND DISCUSSION

I- Identification of fishes

A total of 2122 freshwater fishes were collected randomly from different water bodies in Sulaimani Province during the period from January to the end of December 2018. Table (2) shows number of fish species in different families, their abundance in this area and status. In the present study the fish fauna of this area comprised 36 species in 26 genera and 10 families. The most diverse family was Cyprinidae with 14 species (38.88%) followed by Leuciscidae with 8 species (22.22%) then Nemacheilidae with 6 species (16.66%), then Xenocyprididae with 2 species (5.55%), Bagridae, Heteropneustidae, Mastacembelidae, Mugilidae, Siluridae and Sisoridae each with only one species (2.77%) (Fig. 7).

The native species comprised 31 species (86.11%) in eight families namely Arabibarbus grypus, Barbus lacerta, Capoeta trutta, C. umbla, Carasobarbus kosswigi, C. luteus, Cyprinion kais, C. macrostomum, Garra rufa, Leuciscus vorax, Luciobarbus barbulus, L. esocinus, L. xanthopterus (Cyprinidae), Acanthobrama marmid, Alburnoides velioglui, Alburnus caeruleus, Alburnus mossulensis, Chondrostoma regium, Leuciscus vorax, Squalius cephalus and S. lepidus (Leuciscidae), Mystus pelusius (Bagridae), Mastacembelus mastacembelus (Mastacembelidae), Planiliza abu (Mugilidae), Eidinemacheilus proudlovei, Oxynoemacheilus gyndes, O. hanae, O. kurdistanicus, O. zarzianus and Turcinoemacheilus kosswigi (Nemacheilidae). Silurus triostegus (Siluridae), and *Glyptothorax kurdistanicus* (Sisoridae). While, five exotic species (13.88%) were listed in three families including: *Carassius auratus*, *Cyprinus carpio* (Cyprinidae),

44

Hemiculter leucisculus and Hypophthalmichthys molitrix (Xenocyprididae), and Heteropneustes fossilis (Heteropneustidae).

Table (2): List of fishes collected from different water bodies in Sulaimani Province with their numbers and status.

Family and Scientific Names	Number	Status
		according to
		IUCN
Family: Cyprinidae Rafinesque, 1815		
Arabibarbus grypus (Heckel, 1843)	123	VU
Barbus lacerta Heckel, 1843	7	LC
Capoeta trutta (Heckel, 1843)	222	LC
Capoeta umbla (Heckel, 1843)	161	LC
Carasobarbus kosswigi (Ladiges, 1960)	5	VU
Carasobarbus luteus (Heckel, 1843)	89	LC
Carassius auratus (Linnaeus, 1758)*	54	LC
Cyprinion kais Heckel, 1843	10	LC
Cyprinion macrostomum Heckel, 1843	322	LC
Cyprinus carpio Linnaeus, 1758*	195	VU
Garra rufa (Heckel, 1843)	57	LC
Luciobarbus barbulus (Heckel, 1849)	108	NE
Luciobarbus esocinus Heckel, 1843	52	VU
Luciobarbus xanthopterus Heckel, 1843	31	VU
Family: Leuciscidae Bonaparte 1835		
Acanthobrama marmid Heckel, 1843	20	LC
Alburnoides velioglui Turan, Kaya, Ekmekçi & Doğan,	22	NE
2014**		
Alburnus caeruleus Heckel, 1843	7	LC
Alburnus mossulensis Heckel, 1843	62	NE
Chondrostoma regium (Heckel, 1843)	52	LC
Leuciscus vorax (Heckel, 1843)	1	LC
Squalius cephalus (Linnaeus, 1758)	37	LC
Squalius lepidus Heckel, 1843	62	LC
Family: Xenocyprididae Günther 1868		
Hemiculter leucisculus (Basilewsky, 1855)*	121	LC
Hypophthalmichthys molitrix (Valenciennes, 1844)*	2	NT
Family: Bagridae Bleeker, 1858		
Mystus pelusius (Solander, 1794)	8	LC
Family: Heteropneustidae Hora, 1936a		
Heteropneustes fossilis (Bloch, 1794)*	8	LC
Family: Mastacembelidae Swainson, 1839		
Mastacembelus mastacembelus (Banks & Solander, 1794)	94	LC

Family: Mugilidae Cuvier, 1829		
Planiliza abu (Heckel, 1843)	76	LC
Family: Nemacheilidae Regan, 1911		
Eidinemacheilus proudlovei Freyhof, Abdullah, Ararat,	40	NE
Hamad & Geiger, 2016		
Oxynoemacheilus gyndes Freyhof & Abdullah, 2017	14	NE
Oxynoemacheilus hanae Freyhof & Abdullah, 2017	5	NE
Oxynoemacheilus kurdistanicus Kamangar, Prokofiev,	12	NE
Ghaderi & Nalbant, 2014		
Oxynoemacheilus zarzianus Freyhof & Geiger, 2017	2	NE
Turcinoemacheilus kosswigi Bănărescu & Nalbant, 1964	2	LC
Family: Siluridae Cuvier, 1816		
Silurus triostegus Heckel, 1843	20	LC
Family: Sisoridae Bleeker, 1858		
Glyptothorax kurdistanicus (Berg, 1931)	19	DD
Total	2122	-

*= Exotic fish; **=New record in Iraq; **DD**= Data Deficient; **LC**= Least Concern; **NE**= Not Evaluated; **NT**=Near Threatened; **VU**= Vulnerable

Fig. (7): Percentage composition of fish families collected in the present study

The native distribution of *C. auratus* is in northern Asia and China. *C. carpio* naturally found in Europe and Asia, In Iraq they were first introduced from Holland and Indonesia. *H. leucisculus* was originally described from Peking, China. The native range of this species is from Maritime Russia south through China to Korea and Vietnam. *H. molitrix* was originally described from China and the natural distribution is from the Amur River in the former U.S.S.R. southward to southern China. Also, *H. fossilis* was described from Tranquebar, Tamil Nadu, India. These fishes were introduced into Iraqi water bodies for different purposes such as food fish, phytoplankton control, and as a biological control of mosquito and snail in order to control the parasitic diseases especially malaria and bilharzia (Coad, 2010).

The most abundant and wide spread species recorded in this investigation was known *C. macrostomum* with prevalence 15.17%, followed by *C. trutta* with the prevalence of 10.46%, then *C. carpio* as a third rank with the prevalence 9.18%. It was clarified that *L. vorax* was scarce with the prevalence 0.047%.

According to International Union for Conservation of Nature (IUCN) red list of threatened species, four of the native species are vulnerable including *A. grypus, C. kosswigi, L. esocinus* and *L. xanthopterus* (Table 2).

Apparently, many factors may affect decreasing these fish species in Sulaimani Province water bodies such as illegal way of fishing, overfishing, fishing in a spawning season, climate change, flood, water pollutions, instruction of gravel mining on streams and rivers, and introducing the exotic species annually especially common carp which they compete the native species for the place and food. Moreover, demanding of local people on these types of fishes is another reason for more fishing by fisherman. It is expected that the ichthyofauna of Sulaimani Province could be more than this investigation and need more ichthyologists to find them.

In the past years there were a few works on ichthyofauna in Sulaimani Province; Ciepielewski *et al.* (2001) mentioned the name of 20 species (*Barbus grypus*, *B. barbulus*,, *B. esocinus*, *B. kersin*, *B. longiceps*, *B. luteus*, *B. pectoralis*, *B. rajanonim*, *B. xanthopterus*, *Chondrostoma nasus*, *C. regium*, *Cyprinus carpio*, *Leuciscus cephalus*, *Mastacembelus mastacembelus*, *Silurus glanis*, *S. triostegus*, *Varicorhinus barroisi*, *V. damascinus*, *V. trutta* and *V. umbla*) during their investigation in both Dokan and Derbandikhan Lakes.

Abdullah (2006) recorded 23 species (Acanthobrama marmid, Alburmus mossulensis, A. sellal, Barbus barbulus, B. belayewi, B. esocinus, B. grypus, B. kersin, B. luteus, B. subquincunciatus, B. xanthopterus, Capoeta trutta, Chondrostoma regium, Cyprinion macrostomum, Cyprinus carpio, Garra rufa, Leuciscus cephalus, L. lepidus, Varicorhinus trutta, Glyptothorax kurdistanicus, Heteropneustes fossilis, Liza abu and Mastacembelus mastacembelus.) from Dokan Lake. Abdullah et al. (2007) recorded 26 species (Acanthobrama marmid, Aspius vorax, Barbus barbulus, B. esocinus, B. grypus, B. kersin, B. lacerta, B. luteus, B. xanthopterus, Capoeta damascinus, C. trutta, Chondrostoma regium, Cyprinion macrostomum, Cyprinus carpio, Garra rufa, Hypophthalmicthyes molitrix, Leuciscus cephalus, L. lepidus, L. spurious, Varicorhinus barroisi, V. umbla, Silurus glanis, Glyptothorax kurdistanicus, Heteropneustes fossilis, Liza abu and *Mastacembelus mastacembelus*) in Derbandikhan Lake. Rasheed (2011) recorded five species (Barbus grypus, B. esocinus, Capoeta damascinus, *Carassius auratus* and *Cyprinus carpio*) from Derbandikhan Lake, Abdullah & Abdullah (2018) recorded 17 species (Arabibarbus grypus, Barbus barbulus, Capoeta trutta, C. umbla, Carasobarbus luteus, Carassius auratus, Chondrostoma regium, Cyprinion macrostomum, Cyprinus carpio, Garra rufa, Hemiculter leucisculus, Hypophthalmichthys molitrix, Luciobarbus esocinus, Squalius lepidus, Mystus pelusius, Silurus triostegus, and Mastacembelus mastacembelus) in the same lake.

It seems from the previous study that mentioned above the biodiversity of fish species in Sulaimani Province which recorded by researchers was very limited and nearly all of them were recorded the same species and they were not recording a new species, this is due to the way of specimen collection, nearly all researchers depended on the fisherman whom they use gillnetting or hock for fishing, and they couldn't collect and record those fishes which they never reach to enough size in order to capture by gillnet. Moreover, the place of fishing is another reason, most of researcher only collected the fish from the lakes and the large rivers, but they didn't collect fishes from small streams and springs. The evidence supporting this idea is the size of those fishes which they recorded by the researchers, most of them were fishes which they use as a food by local people and they present in the local markets.

In the present study, *Alburnoides velioglui* was recorded for the first time in Iraq which collected in Zalm Stream, Sirwan River drainage in Sulaimani Province, Kurdistan Region-Iraq. The following is an account on morphometric and meristic of the genus and the species of this fish:

Alburnoides Jeitteles, 1861

Sprilins of the genus *Alburnoides* Jeitteles, 1861 are small sized fish, which inhabit fast flowing waters especially small streams and is less frequent in the main flow of large rivers. It prefers well-oxygenated water, low in pollution, with hard streambeds. Also, found in the surf zone of lakes. The Genus *Alburnoides* is distinguished by having elongate anal fin, decurved lateral line often with a distinct spotting pattern (small black spot) on each sides of the lateral line pore and presence the orange base of the pectoral, pelvic and anal fins (Kottelate & Freyhof, 2007; Bogutskaya & Coad 2009; Coad 2010).

Alburnoides velioglui Turan, Kaya, Ekmekçi & Doğan, 2014

1- Morphological study of A. velioglui

A total of 22 *Alburnoides velioglui* (Fig. 8) were collected from Zalm Stream at Taparezina Village.

Morphological investigation of *A. velioglui* populations from Zalm Stream revealed as small fish, body moderately deep and slightly compressed in both sides. Head short less than its width, eyes large, Mouth is terminal, tip of both lips are equal, rounded tip snout. Lateral line pigmentation is distinct. Pectoral fins are short not reaching pelvic-fin origin. Pelvic fins are short, not reaching the origin of anal fin, but reaching the anus. Anal fin is slender. Ventral keel poorly developed between pelvic and anal fins and completely scaled. Caudal fin moderately forked.

Total length 50-55 mm, standard length 40-46 mm, head length 7-12 mm, body depth at dorsal fin origin 14-19 mm, eye diameter 4 mm, snout length 2.5-3 mm, post orbital length 5 mm, interorbital length 4 mm. The number of scales on lateral line is 45-50. The number of branched dorsal fin

ray $8\frac{1}{2}$, branched pectoral fin ray 10-11, branched pelvic fin ray $6\frac{1}{2}$, branched anal fin ray $13\frac{1}{2}$, branched caudal fin ray 17.

The morphometric and meristic data of the present specimen are closely similar to the specimens of Turan *et al.* (2014) who recorded it for the first time from the northern Euphrates drainage (Sırlı, Karasu, Divriği and Sultansuyu Streams) in eastern Anatolia, Turkey. Based on the consulting with the specialized scientific side Dr. Jörg Freyhof, Museum für Naturkunde Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany and Dr. Cüneyt Kaya, Recep Tayyip Erdogan University, Faculty of Fisheries and Aquatic Sciences, Turkey, it was confirmed that this fish is *A. velioglui*.

In Iraq, there was only one species of *Alburnoides* recorded (*A. bipunctatus*) as a complex species (Coad, 2010). One specimen from Iraq in the Natural History Museum, London has no locality data and a second is listed as from Sarchinar in Sulaymani City. Although, Coad (2010) mentioned that it has probably been misidentified or confused with other species in Iraq. So, *Alburnoides velioglui* has been now recorded for the first time in Iraq from Zalm Stream near Taparezina Village a tributary of the Sirwan River in Sulaimani City, Kurdistan Region, Iraq during an expedition April 2018.

Alburnoides is belongs to Leuciscidae, according to Tan & Armbruster (2018) there are six genera with eight species of this family in Iraq. *Alburnoides* are wide spread from France to Afganistan (Kottelat & Freyhof 2007) and five species (*A. diclensis, A. emineae, A. idignensis, A. nicolausi, A.velioglui*) are known to occur in the Euphrates and Tigris River drainages (Turan *et al.* 2016). In addition, from adjacent Iran, 12 species (JouladehRoudbar *et al.*, 2016; Esmaeili *et al.*, 2018) and from Turkey 12 species of *Alburnoides* were recorded (Turan & Kaya, 2019; Kaya, 2020).

Fig. (8): Alburnoides velioglui

- A- *Alburnoides velioglui*, 46 mm SL; Iraq: Zalm stream at Tapazerina village.
- B- Anal fin of Alburnoides velioglui.

2- Molecular study of A. velioglui

The molecular examination of *A. velioglui* in the present study was done by amplifying the COX-1 gene region and sequencing the amplicon by using Genetic analyzer 3500, an applied Biosystems (USA). After the morphological identification, the COX-1 regions from individual fish were amplified by PCR from genomic DNA samples. Agarose gel electrophoresis demonstrated the size of COX-1 region was 655 bp (Fig. 9).

Fig. (9): PCR product of COX-1 sequences of *Alburnoides velioglui* on a 2% TAE agarose gel.

M= DNA ladder (1Kb); lanes 1,2,3,4= PCR product of COX-1 sequences of *A*. *velioglui*; 5= negative control.
Sequence and phylogenetic analysis of A. velioglui

Alignment of resulted sequences revealed that there is no significant variation of COX-1 regions, which indicate the presence of only one fish species. The resulted COX-1 sequences obtained from the present fish show the highest similarity (97.19%) to COX-1 sequence of *Alburnoides qanati* (Accession number: KU705266) from the Gene Bank were blasted (online) which sequenced by Roudbar *et al.* (2016).

The results are in agreement with Roudbar *et al.* (2016) who used mtDNA COX-1 625 locus to study nine species of the genus *Alburnoides* from different river drainage in Iran, and Levin *et al.* (2018) who used COX-1 as a DNA barcode marker to create a reference dataset of Caucasian *Alburnoides*.

For many years, only subspecies of *A. bipunctatus* had been recognized (Barbieri *et al.*, 2017), while recent molecular and phylogenetic studies described several populations in Europe and Asia (Bogutskaya and Coad 2009; Geiger *et al.* 2014; Stierandova *et al.* 2016; Roudbar *et al.* 2016; Levin *et al.* 2018; Esmaeili *et al.*, 2018).

Alburnoides velioglui was discovered for the first time in 2014 by Turan *et al.* (2014) in Turkey. There is no molecular study on *Alburnoides* in Iraq before. This is the first molecular approach toward this fish in Iraq. The genetic characterization of *A. velioglui* in the present study is available in the GenBank database. COX-1 sequence obtained was deposited in GenBank under the accession number (MN893770).

In order to verify the morphological identities, the obtained sequence data of COX-1 from *A. velioglui* collected in stream Zalm were subjected to phylogenetic analysis. The sequence data aligned with the 31 data sequence of COX-1 form other *Alburnoides* including 13 genotypes that detected in

GenBank (Accession numbers: HQ600666 *A. prespensis*, KJ552616 *A. fangfangae*, KJ552639 *A. devolli*, KU705247 *A. idignensis*, KU705255 *A. namaki*, KU705256 *A. coadi*, KU705259 *A. nicolausi*, KU705266 *A. qanati*, KU705271 *A. samiii*, KX189528 *A. eichwaldii*, KX189559 *A. gmelini*, KX189569 *A. fasciatus*, and KX189574 *A. kubanicus*), and 18 sequences of different genotypes (*Alburnoides diclensis*, *A. emineae* and *A. velioglui*) obtained from Dr. Jörg Freyhof, Museum für Naturkunde Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany (unpublished data), also *Alburnus caeruleus* (MG775321) was used as outgroup detected in GenBank.

Phylogenetic analysis was conducted in MEGA X (Kumar *et al.*, 2018). The evolutionary histories were inferred by using the Maximum Likelihood (ML) method and Tamura-Nei model (Tamura & Nei, 1993). The tree with the highest log likelihood (-1986.68 for COX-1) are shown (Fig. 10). Initial trees for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site (next to the branches). The *A. velioglui* in the present study were clustered in the same clade of *A. velioglui* which previously collected by Dr. Jörg Freyhof in both Iraq and Turkey. Moreover, the phylogenetic tree of the COX-1 sequences using ML analysis indicated that *Alburnoides velioglui* clades were distinct species by high bootstrap values (Fig. 10).

Fig. (10): Phylogenetic relationships between *Alburnoides velioglui* from the present study and other *Alburnoides* species as inferred by maximum likelihood obtained from COX-1. The species number (1-4) indicates the isolated species sequenced from the present study. *Alburnus caeruleus* was used as outgroup.

II- Contracaecum larvae

1- Prevalence of Contracaecum larvae

A total of 2122 fish were examined for parasitic larval *Contracaecum* nematodes, 30 fishes belonging to 10 different fish species were infected. The parasitic larvae were found in the intestinal wall, liver, ovaries, swim bladder, gallbladder, and mesenteries of the infected fishes. The prevalence of *Contracaecum* larva and the mean of intensity per infected fish varied among different fish species (Table 3).

A total of 7 fish (prevalence 35%, mean intensity 5.57) out of the 20 Acanthobrama marmid specimens examined were infected with *Contracaecum* larvae, which represented the highest prevalence among the collected fishes. While, only one fish (prevalence 0.81%, mean intensity 7) out of 123 Arabibarbus grypus specimens examined was infected with this larvae, which represented the lowest prevalence among the collected fishes in the present study. These results agreed with Abdullah & Mhasein (2011), who recorded Contracaecum larvae in Acanthobrama marmid and *Chondrostoma regium* with prevalences of 16.6% and 36.4%, respectively, among ten fish species in the Lesser Zab River. This variation in the prevalence may be related to the temperature, water level, intensity of both the intermediate host and migratory bird (final host), and the types of food and feeding habits of the fishes (Younis et al., 2017).

The present investigation shows that prevalence and intensity of *Contracaecum* larvae in the examined fishes are relatively low. It is considered to mention that only visual examination was used to isolate *Contracaecum* larvae in this study. The prevalence and number of larvae may have been higher than *Contracaecum* larvae found in the collected fishes in the present study if an incubation method had been used (Shamsi &

Suthar 2016). Third larval stage of the anisakid nematode *Contracaecum rudolphii* Hartwich, 1964, are commonly infect a range of fish species and mainly cyprinids particularly in area where the final host (piscivorous birds such as cormorants) are found (Moravec, 1994).

Table (3): Prevalence of *Contracaecum* larvae and mean of intensity among fish species.

Hosts	Fish		Prevalence	Mean	Site of	
	No.	No.	%	intensity	infection	
	Examined	Infected				
A. marmid	20	7	35	5.57	Gallbladder and	
A. grypus	123	1	0.81	7	Intestinal wall and ovaries	
C. trutta	222	2	0.90	3	Liver and mesentery	
C. luteus	89	4	4.49	4.25	Liver and mesentery	
C. regium	52	3	5.76	9	Intestinal wall and liver	
C. carpio	195	4	2.05	2.75	Intestinal wall and swim bladder	
L. barbulus	108	1	0.92	6	Intestine wall and liver	
L. esocinus	52	1	1.92	6	Intestine wall and liver	
L. xanthopterus	31	6	19.35	2.66	Intestine wall and liver	
M. mastacembelus	94	1	1.06	5	Liver and mesentery	

2- Morphological identification of Contracaecum larvae

Morphological examination and measurements were done by optical microscope and showed that the Anisakid larva of the present study were *Contracaecum* larvae (L3) as described by Moravec (2009). Additionally, there were no any significant morphological differences among the larvae which were recorded in different fishes.

The *Contracaecum* larvae were light brownish-yellow in color. They have elongated cylindrical body, forming collar at the anterior end, short tail with rounded tip. The bodies have fine, dense transverse striation of the cuticle. The larvae were encapsulated within slender body, they have distinct boring tooth. Excretory pore was situated anteriorly, cuticular striations observed through the whole length of the body. Esophagus consists of a long muscular part and a short glandular ventriculus. Esophageal caecum was extended posteriorly and the intestinal caecum was extending anteriorly. The intestine was filled with numerous small brownish granules. Gonads and other parts of reproductive system not developed (Fig. 11, 12).

Total length of the larvae is 3.5-11 mm, width 0.10-0.35 mm. Esophagus length 0.45-1.3 mm. Intestinal caecum length 0.20-0.48 mm. esophageal caecum length 0.30-0.70 mm (Table 4). Since this parasite in the larval stage the reproduction system not developed yet, it is difficult to determine the exact classification status in the level of species morphologically.

The present specimens show close resemble to those specimens which have been recorded by Abdullah (1990) from *Arabibarbus grypus* (reported as *Barbus grypus*) and *Carasobarbus luteus* (reported as *Barbus luteus*) from Dukan Lake, and by Moravec (2009) studied in *Cyprinus carpio* from Czech Republic in both measurements and characters. During microscopical

- **A-** Anterior region of the larva
- **B-** Posterior region of the larva
- C- Mouth region of the larva
- **D-** Anal region of the larva

an= anus; **bt**= boring tooth; **cr**= cuticle ridges; **ep**= excretory pore; **eso**= esophagus; **esoc**= esophageal caecum; **int**= intestine; **intc**= intestinal caecum; **mo**= mouth opening; **p**= papillae; **rec**= rectum; **ta**= tail.

- **B-** Posterior part of the larva
- **C-** Mouth region of the larva
- **D-** Tail region of the larva
 - **an**= anus; **bt**= boring tooth; **cr**= cuticle ridges; **ep**= excretory pore; **eso**= esophagus; **esoc**= esophageal caecum; **int**= intestine; **intc**= intestinal caecum; **mo**= mouth opening; **rec**= rectum; **ta**= tail.

Table (4): Comparison of measurements of systematically important features in *Contracaecum* larvae in different fish species in the present study (in millimeter)

Contracaecum	Total	Maximum	Tail	Rectum	Boring	Esophagus	Esophageal	Intestinal
Jarvae	Length	width	length	length	tooth	length	caeca	caeca
Hosts					length		length	length
A. marmid	4.10	0.20	0.07	0.07	0.005	0.48	0.50	0.38
A. grypus	5.07	0.25	0.07	0.07	0.01	0.65	0.30	0.20
C. trutta	4.20	0.23	0.08	0.07	0.005	0.45	0.48	0.33
C. luteus	4.62	0.25	0.08	0.07	0.005	0.600	0.55	0.40
C. regium	7.75	0.35	0.08	0.09	0.01	0.600	0.60	0.45
C. carpio	3.50	0.25	0.085	0.07	0.005	0.70	0.70	0.48
L. barbulus	3.50	0.20	0.08	0.07	0.005	0.68	0.50	0.30
L. esocinus	5.00	0.25	0.08	0.07	0.005	0.75	0.52	0.40
L. xanthopterus	3.35	0.17	0.09	0.07	0.005	0.68	0.50	0.30
M. mastacembelus	5.20	0.75	0.04	0.03	0.0075	0.70	0.50	0.37

studies, there were no significant morphological differences among the *Contracaecum* larvae which they recorded in present investigation in these 10 different fish species, and the photomicrograph of the third larval stage (L3) of *Contracaecum* in both *Carasobarbus luteus* and *Luciobarbus xanthopterus* were put just as examples (Fig. 11; 12 respectively). The larvae morphologically identified as belonging to the genus *Contracaecum* and they were subjected to further molecular characterization to identify their species. The specific identification of *Contracaecum* larvae is not possible based solely on morphological description (Shamsi *et al.*, 2017).

3- Ultra-morphological study of *Contracaecum* larvae

The scanning electron microscopy (SEM) study revealed that the patterns of cuticular striations of larvae from all fishes are striated regularly, which they are narrow in both of the anterior larvae and in pre tail region and become wider gradually when extended posteriorly. There are no significant different ornamentations among the larvae etween the striated cuticular rings there are transverse striation (Fig. 13).

The mouth was transverse in shape; the lips are not well developed and provided by four papillae, a well-defined boring tooth present. Excretory pore anteriorly located just below the mouth. Anal opening is located near the posterior end. Tail is short; the body is free of any projections like spine or papillae. The cloacal region has no any papillae because they are in larval stage and not mature yet. The ultra-structural characters of the present specimen were show a great similarity with the specimen (*Contracaecum* larvae) collected by Younis *et al.* (2017) who studied from different freshwater fishes from Lake Nasser in Egypt. Also, the ultra-structural feature of the present *Contracaecum* larvae are closed to those specimens

Fig. (13): Scanning Electron micrograph of Contracaecum larva in Carasobarbus luteus

- **A-** Anterior region of the larva
- **B-** Head region of the larva
- C- Posterior region of the larva
- **D-** Cuticlar striation of the larva

an= anus; **bt**= boring tooth; **cu**= cuticle; **exp**= excretory pore; **mo**= mouth opening; **p**= papillae; **ta**= tail.

were studied with SEM by Rahemo & Nawab Al-Din (2009) in *Acanthobrama marmid* from Tigris River. During Scanning electron microscopy studies, there were no significant ultra-morphological differences among the *Contracaecum* larvae which they recorded in present investigation from these 10 different previously mentioned fish species, and the scanning electron photomicrograph of the third larval stage of *Contracaecum* in *Carasobarbus luteus* put just as an example (Fig. 13).

4- Molecular study of Contracaecum larvae

The molecular examination of *Contracaecum* larvae in the present study included the mid pieces of three specimens from each host species (*A. marmid, A. grypus, C. trutta, C. luteus, C. regium, C. carpio, L. barbulus, L. esocinus, L. xanthopterus* and *M. mastacembelus*) were done by amplifying the ITS-1, ITS-2 and COX-2 gene regions and sequencing the amplicon by using Genetic analyzer 3500, an applied Biosystems (USA).

PCR of ITS-1, ITS-2 and COX-2 analysis

After the morphological identification, the ITS-1, ITS-2 and COX-2 regions from individual larva were amplified by PCR from genomic DNA samples (n = 30). Agarose gels electrophoresis demonstrated the same size for each ITS-1, ITS-2 and COX-2 region. Amplicons were 530 bp, 430 bp and 629 bp for the ITS-1, ITS-2, and COX-2 respectively confirming that all sequences are of the same genus (Figs: 14, 15, 16).

Fig. (14): PCR product of ITS-1 sequences of *Contracaecum* larvae in different fish species on 2% TAE agarose gel. **M**= DNA ladder (1Kb).

Fig. (15): PCR product of ITS-2 sequences of *Contracaecum* larvae in different fish species on 2% TAE agarose gel. **M**= DNA ladder (1Kb).

Fig. (16): PCR product of COX-2 sequences of *Contracaecum* larvae in different fish species on 2% TAE agarose gel. **M**= DNA ladder (1Kb).

Sequence analysis of Contracaecum larvae

Alignment of resulted sequences revealed that there is no significant variation of each ITS-1, ITS-2 and COX-2 regions, which indicate the presence of only one type of larva. Based on percentage identities of nucleotides from GenBank, the online BLAST tool showed the ITS-1 sequences obtained from larvae-infected *A. marmid*, *A. grypus*, *C. trutta*, *C. luteus*, *C. regium*, *C. carpio*, *L. barbulus*, *L. esocinus*, *L. xanthopterus* and *M. mastacembelus* matched 99.78%, 100%, 99.76%, 100%, 100%, 100%, 100%, 99.55%, 100% and 100% respectively to the previously reported reference gene sequences for the ITS-1 in *Contracaecum rudolphii* B (Zhang *et al.*, 2009) from the stomachs of the final host great cormorant *Phalacrocorax carbo sinensis* from the Guangzhou Zoo in Guangdong in China, which was examined previously and deposed in GenBank

(FJ467618) (Zhang *et al.*, 2009) (Appendix: Fig. 24 to 33), while the ITS-2 sequences obtained from larvae-infected the mentioned host species matched 100% to the previously reported reference gene sequences for the ITS-2 in *Contracaecum rudolphii* B (Zhang *et al.*, 2009) from the same mentioned host and locality, which was deposed in GenBank (FJ467620) (Zhang *et al.*, 2009) (Appendix: Fig. 34 to 43). Also, matched 100% to the previously reported reference gene sequences for the ITS-2 in *Contracaecum rudolphii* B (Li *et al.*, 2005) from the same host from the Venice lagoon in northeastern Italy and from Monaci Lake in central Italy, which was examined previously and deposed in GenBank (AJ634786) (Li *et al.*, 2005).

The COX-2 sequences obtained from larvae-infected A. marmid matched 98.52% to the previously reported reference gene sequences for the COX-2 in Contracaecum rudolphii B (Mattiucci et al., 2008b) from the stomachs of great cormorant P. carbo sinensis from Italy, which was examined previously and deposed in GenBank (EF122203) (Mattiucci et al., 2008b) (Appendix: Fig. 44). The COX-2 sequences obtained from larvaeinfected A. grypus, C. trutta, C. regium, L. barbulus, L. esocinus, L. xanthopterus and M. mastacembelus matched 100%, 99.19%, 100%, 100%, 99.37%, 100% and 99.58% respectively to the previously reported reference gene sequences for the COX-2 in Contracaecum rudolphii B (Mattiucci et al., 2008b) from the great cormorant *P. carbo sinensis* from Italy, which was examined previously and deposed in GenBank (EF513509) (Mattiucci et al., 2008b) (Appendix: Fig. 45, 46, 48, 50, 51, 52 and 53). While, the COX-2 sequences obtained from larvae-infected C. luteus and C. carpio matched 99.79% to the previously reported reference gene sequences for the COX-2 in Contracaecum rudolphii B from the same host which was examined

previously and deposed in GenBank (EF558894) (Mattiucci *et al.*, 2008b) (Appendix: Fig. 47 and 49).

The genetic characterization of the parasites in the present study are available in the GenBank database; the ITS-1, ITS-2 and COX-2 sequences obtained were deposited in GenBank and their accession numbers were demonstrated in Table (5). The ITS-1, ITS-2 and COX-2 sequence analyses confirmed that the third larval stage of *Contracaecum* (L3) parasitizing the fishes from the present study belong to species *Contracaecum rudolphii* type-B, a parasite at the adult stage of the great cormorant *Phalacrocorax carbo sinensis* mainly from Italy water (Li *et al.*, 2005; Mattiucci *et al.*, 2008b). ITS-1, ITS-2 and COX-2 markers may provide reliable evidence for specific species identification of *Contracaecum* larvae occurring in fish (Mattiucci *et al.*, 2010). Therefore, the occurrence of *C. rudolphii* B larvae from Iraqi waters was also proved by molecular evidence inferred from the ITS-1, ITS-2 and COX-2 markers used in the present study.

Host of <i>Contracaecum</i>	Accession numbers for ITS-1	Accession numbers for ITS-2	Accession numbers for COX-2
rudolphii B	sequences	sequences	sequences
A. marmid	MN557376	MN526259	MN589997
A. grypus	MN557377	MN563727	MN589998
C. trutta	MN557378	MN563728	MN589999
C. luteus	MN557379	MN563729	MN590000
C. regium	MN557380	MN563730	MN590001
C. carpio	MN557381	MN563731	MN590002
L. barbulus	MN557382	MN563732	MN590003
L. esocinus	MN557383	MN563733	MN590004
L. xanthopterus	MN557384	MN563734	MN590005
M. mastacembelus	MN557385	MN563735	MN590006

 Table (5): Accession numbers provided by NCBI for the collected Contracaecum

 larvae in different fish hosts in the present study

The sequences of ITS-1, ITS-2 and COX-2 obtained from the collected larvae in different fish species were aligned with each other (the same gene). The results of multiple sequence alignment as follow:

Pairwise comparisons of all nucleotides sequence among the *Contracaecum* larvae collected in the 10 different fish hosts revealed that only three nucleotide variation (0.65%) in alignment position 31, 32 and 161 for ITS-1 (Fig. 17A; 17B), and there was no nucleotide variations in alignment for ITS-2 (Fig. 18A; 18B). While, COX-2 showed 18 nucleotide variations (3.27%) in alignment positions 27, 33, 36, 54, 57, 78, 117, 138, 144, 150,168, 177, 282, 318, 336, 384, 474 and 480 (Fig. 19A; 19B).

Contracaecum rudolphii Hartwich, 1964 is a species complex it consist of several sibling species. *C. rudolphii* sensu lato named *C. rudolphii* A and *C. rudolphii* B (D'Amelio *et al.* 1990), they could also be differentiated from each other based on the ITS-1 and ITS-2 sequence data (Li *et al.* 2005). D'Amelio *et al.* (2007) indicated the existence of a third cryptic species of *C. rudolphii* complex (*C. rudolphii* C) in double-crested cormorants from west-central Florida based on PCR-RFLP and sequencing of the rrnS mitochondrial gene and nuclear ribosomal spacers. Shamsi *et al.* (2009) described two new sibling species of the *C. rudolphii* complex, *C. rudolphii* D from *Phalacrocorax carbo* and *C. rudolphii* E from *Phalacrocorax varius* in Australia, based on the ITS-1 and ITS-2 sequence data. Recently, D'Amelio *et al.* (2012) recorded new isolate of *C. rudolphii* complex (*C. rudolphii* F) from brown pelican *Pelecanus occidentalis* in the northern Gulf of Mexico.

Various studies demonstrated that ITS-1 and ITS-2 of the nuclear ribosomal DNA (rDNA) provide genetic markers for the accurate identification of a range of species of Ascaridoids. In addition, more studies

C.trutta TTACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACGCCTCGACTC L.mantacembelus TTACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGAGGCCTCGACTC C.appio TTACGACTCATCAACACGCCCGCCATATCCAAGAATGGAACGGCGGGAGGCCTCGACTC C.regium TTACGACTCATCAACACGCCCGCCATATCCAAGAATGGAACGGCGGGAGGCCTCGACTC C.luteus TTACGACTCATCAACACGCCCGCCATATCCAAGAATGGAACGGCGGGAGGCCTCGACTC L.esocinus TTACGACTCATCAACACGCCCGCCATATCCAAGAATGGAACGGCGGGAGGCCTCGACTC L.esocinus TTACGACTCATCAACACGCCCGCCATATCCAAGAATGGAACGGCGGGAGGCCTCGACTC L.esocinus TTACGACTCATCAACACGCCCGCCATATCCAAGAATGGAACGGCGGGAGGCCTCGACTC C.trutta CGGTCAACTTTGGAAATGAAAGGAACGGTGGTTTTGGGTTTTGGCGGCCCCTCACG C.trutta CGGTCAACTTTGGAAATGAAAGGAACGGTGGTTTTGGGTTTGGCGGCCCTCACG C.capjo CGGTCAACTTTGGAAATGAAAGAAACGGTGGTTGTGTTGGGTTTGGCGGCCCTCACG C.capju CGGTCAACTTTGGAAATGAAAGAAACGGTGGTTGTTTGGGTTTGGCGGCCCTCACG C.capju CGGTCAACTTTGGAAATGAAAGAAACGGTGGTTGTGGGTTTGGCGGCCCTCACG C.luteus CGGTCAACTTTGGAAATGAAAGAAACGGTGGTTGTGGGTTTGGCGGCCCTCACG C.luteus CGGTCAACTTTGGAAATGAAAGAAACGGTTGGTTTGGGTTTGGCGGCCCTCACG C.luteus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTTTTGGGTTTGGCGGCCCTCACG C.luteus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTGGGTTTGGCGGCCCTCACG C.sepjum CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTGGGTTTGGCGGCCCTCACG C.sepjum CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTGGGTTTGGCGGCCCTCACG C.sepjum CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTGGGTTTGGCGGCCCTCACG C.sepjum CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTGGGTTTGGCGGCCCTCACG C.trutta GGGCTCATTAAGTCTGCTCAACCTATAGAGAGGGAACTTTCCCCCCACCTTTCATGCT C.capju GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCCACCTTTCATGCT C.capju GGGCTCATTAAGTCTGCTCAACTCATAGAGAGAGGAACTTTCTCCCCCACCTTTCATGCT C.capju GGGCTCATTAAGTCTGCTCAACTCATAGAGAGAGACTTTCTCCCCCACCTTTCATGCT C.capju GGGCTCATTAAGTCTGCTCAACTCATAGAGAGAGACTTTCTCCCCCACCTTTCATGCT C.capju GGGCTCATTAAGTCTGCTCAACTCATAGAGAGAGACTTTCTCCCCCACCTTTCATGCT C.capju GGCCTCATAAGTCTGCTCAACTCATAGAGAGAGACTTTCTCCCCCACCTTTCATGCT C.capju GGCCTCATAAGTCTGCTCAACTCATAGAGAGAGACTTTCTCCCCCCCC	A.marmid	TTACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACGCCTCGACTCAT
L.xanthopterus TTACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACGCCTCGACTC M.mastacembelus TTACGACTCATCAACACGCCCGCCATATCCAAGAATGGAACGGCGGGAGCGCTCGACTC L.barbulus TTACGACTCATCAACACGCCCGCCATATCCAAGAATGGAACGGCGGGAGCGCTCGACTC C.carpio TTACGACTCATCAACACGCCCGCCATATCCAAGAATGGAACGGCGGAGCGCTCGACTC C.gutus TTACGACTCATCAACACGCCCGCCATATCCAAGAATGGAACGGCGGAGCGCTCGACTC L.sorolus TTACGACTCATCAACACGCCCGCCATATCCAAGAATGGAACGGCGGAGCGCCTCGACTC L.sorolus TTACGACTCATCAACACGCCCCGCATATCCAAGAATGGAACGGCGGGACGCCTCGACTC L.sorolus TTACGACTCATCAACACGCCCCGCATATCCAAGAATGGAACGGCGGGACGCCTCCACG C.trutta CGGTCAACTTTGGAAATGAAAGAAACGGTTGTGTTTGGGTTTGGGGCCCTCACG C.trutta CGGTCAACTTTGGAAATGAAAGAAACGGTTGTGTTTGGGTTTGGGCGCCCTCACG L.saroblus CGGTCAACTTTGGAAATGAAAGAAACGGTTGTGTTTGGGTTTGGGCGCCCTCACG C.arpio CGGTCAACTTTGGAAATGAAAGAAACGGTTGTGTTTGGGTTTGGGCGCCCTCACG C.grium CGGTCAACTTTGGAAATGAAAGAAACGGTTGTGTTTGGGTTTGGCGCCCTCACG C.grium CGGTCAACTTTGGAAATGAAAGAAACGGTTGTGTTTGGGTTTGGCGCCCTCACG C.grium CGGTCAACTTTGGAAATGAAAGAAACGGTTGTGTTTGGGTTTGGCGCCCTCACG C.grium CGGTCAACTTTGGAATGAAAGAAACGGTTGTGTTTGGGTTTGGGCGCCCTCACG C.grium CGGTCAACTTTGGAATGAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACG C.grium CGGCCCACTTGGAATGC	C.trutta	TTACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACGCCTCGACTCAT
M.mastacembelus TTACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACGCCTCGACTC L.barbulus TTACGACTCATCAACACGCCCGCCATATCCAAGAATGGAACGGCGGGAGCGCTCGACTC C.carpio TTACGACTCATCAACACGCCCGCCATATCCAAGAATGGAACGGCGGGAGCGCTCGACTC C.regium TTACGACTCATCAACACGCCCGCCATATCCAAGAATGGAACGGCGGGAGCGCTCGACTC A.grypus TTACGACTCATCAACACGCCCGCCATATCCAAGAATGGAACGGCGGGAGCGCCTCGACTC L.esocinus TTACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACGCCTCGACTC L.esocinus TTACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACGCCTCACG C.trutta CGGTCAACTTIGGAATGAAAGAAACGGTTGTGTTTGGGTTTTGGCGGCCCTCACG L.santhopterus CGGTCAACTTTGGAATGAAAGAAACGGTTGTGTTTGGGTTTGGCGGCCCTCACG L.santhopterus CGGTCAACTTTGGAATGAAAGAAACGGTTGTGTTTGGGTTTGGCGGCCCTCACG L.santhopterus CGGTCAACTTTGGAATGAAAGAAACGGTTGTGTTTGGGTTTGGGCGCCCTCACG C.carpio CGGTCAACTTTGGAATGAAAGAAACGGTTGTGTTTGGGTTTGGGCGCCCTCACG C.grypus CGGTCAACTTTGGAATGAAAGAAACGGTTGTTTTGGGTTTTGGGGTTTGGCGGCCCTCACG C.grypus CGGTCAACTTTGGAATGAAAGAAACGGTTGTGTTTGGGTTTGGCGGCCCTCACG C.socinus CGGTCAACTTTGGAATGAAAGAAACGGTTGTTTTGCCCCCCACCTTCATGCT A.marmid GGGCTCATTAAGTCGCTCAACTCATAGAGAGAGGACTTTCCCCCCACCTTCATGCT C.sopio GGGCTCATTAAGTCTGCTCAACTCATAGAGAGAGACTTTCCCCCCACCTTTCATGCT GGGCTCATTAAGTCTGCTCAACTCATAGAGA	L.xanthopterus	TTACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACGCCTCGACTCAT
L.barbulus TTACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACGCCTCGACTC C.carpio TTACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACGCCTCGACTC C.negium TTACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACGCCTCGACTC C.luteus TTACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACGCCTCGACTC A.grypus TTACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACGCCTCGACTC L.esocinus TTACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGGACGCCTCACG C.trutta CGGTCAACTTTGGAAATGAAAAGGAACGGTTGTTTTGGGTTTTGGCGGCCCTCACG M.mastacembelus CGGTCAACTTTGGAAATGAAAAGAACGGTTGTTTTGGGTTTTGGCGCCCTCACG L.barbulus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTTTTGGGTTTTGGCGCCCTCACG C.regium CGGTCAACTTTGGAAATGAAAAGAACGGTTGTTTTGGGTTTTGGCGCCCTCACG C.regium CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTTTTGGGTTTTGGCGCCCTCACG C.regium CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTTTTGGGTTTTGGCGCCCTCACG C.regium CGGTCAACTTTGGAAATGAAAAGAACGGTTGTTTTGGGTTTTGGCGCCCTCACG C.regium CGGTCAACTTTGGAAATGAAAAGAACGGTTGTTTTGGGTTTTGGCGCCCTCACG C.regium CGGTCAACTTTGGAAATGAAAAGAACGGTTGTTTTGGGTTTTGGCGCCCTCACG C.regium CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTTTTGGGTTTTGGCGCCCTCACG C.regium CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTTTTGGGTTTTGGCGCCCTCACG A.marmid GGGCTCATTAAGTCTGCTCAACTCATA	M.mastacembelus	TTACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACGCCTCGACTCAT
C.carpio TTACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACGCCTCGACTC C.regium TTACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACGCCTCGACTC C.luteus TTACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACGCCTCGACTC A.grypus TTACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACGCCTCGACTC L.esocinus TTACGACTCATCAACACGCCCGCATATCCAAGAATGGAAAGGGGGGGG	L.barbulus	TTACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACGCCTCGACTCAT
C.regium TTACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACGCCTCGACTC C.luteus TTACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACGCCTCGACTC A.grypus TACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACGCCTCGACTC L.esocinus TTACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGAGCGCCTCGACTC C.trutta CGGTCAACTTTGGAAATGAAAAGGAACGGTTGTTTTGGGTTTTGGCGGCCCTCACG L.xanthopterus CGGTCAACTTTGGAAATGAAAAGGAACGGTTGTTTTGGGTTTGGCGGCCCTCACG C.trutta CGGTCAACTTTGGAAATGAAAAGGAACGGTTGTTTTGGGTTTGGCGGCCCTCACG C.amabulus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTTTTGGGTTTGGCGGCCCTCACG C.capju CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTTTTGGGTTTGGCGGCCCTCACG C.regium CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTTTTGGGTTTGGCGGCCCTCACG C.regium CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTTTTGGGTTTGGCGGCCCTCACG C.regium CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTTTTGGGTTTGGCGGCCCTCACG C.luteus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTTTTGGGTTTGGCGGCCCTCACG C.grypus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTTTTGGGTTTGGCGGCCCTCACG L.esocinus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTTTTGGGTTTGGCGGCCCTCACG A.grypus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTTTTGGGTTTGGCGGCCCTCACG C.grypus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTTTTGGGTTTGGCGGCCCTCACG L.esocinus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTTTTGGGTTTGGCGGCCCTCACG C.capjo GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCACCTTTCATGCT C.capjo GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCACCTTTCATTGCT C.capju GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT C.regium GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT A.grypus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT A.marmid CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGAGGCGCAAAGTGGACACCGTTGTTA M.mastacembelus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGAGCCCAAAGTGGACACCGTTGTTA CACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.acapju CGACGGTCCGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.acapju CGACGGTCCGGCGATAGCTAGGTGAGGCGTAGACCCCAAAGTGGACACCGTTGTTGA C.acapju CGACGGTCCGGCGATAGCTAGGTGAGGCGTAGACCCCAAAGTGGACACCGTTGTTGA C.acapju CGACGGTCCGGCGATAGCTAGGTGAGGCGTAGACCCCAAAGTGGACACCGTTGTTA C.aucGTCCGGCGGATAGC	C.carpio	TTACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACGCCTCGACTCAT
C.luteus TTACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACGCCTCGACTC A.grypus TTACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACGCCTCGACTC L.esocinus TTACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGAGGCCCTCACG A.marmid CGGTCAACTTTGGAAATGAAAGAAACGGTTGTGTTTTGGGGTTTTGGCGGCCCTCACG C.trutta CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGCGGTCCTCACG L.barbulus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGCGGTCCTCACG C.carpio CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGCGGTCCTCACG C.luteus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGCGGCCCTCACG C.luteus CGGTCAACTTTGGAAATGAAAAAAAAAACGGTTGTGTTTTGGCGGCCCTCACG C.luteus CGGTCAACTTTGGAAATGAAAAAAAAAAGGGTTGTGTTTTGGCGGCCCTCACG C.luteus CGGTCAACTTTGGAAATGAAAAAAAAAAGGGTTGTGTTTTGGCGGCCCTCACG L.sarbopterus CGGTCAATTTGGAAATGAAAAAAAAAGGATGTTGTTTTGGCGGCCCTCACG A.marmid GGGCTCATTAAGTCGCTCAACTCATAGAGAGGAACTTTCCCCCACCTTTCATGCT C.trutta CGGGCTCATTAAGTCGCTCAACTCATAGAGAGGAACTTTCCCCCACCTTTCATGCT L.santhopterus GGGCTCATTAAGTCGCTCAACTCATAGAGAGGAACTTTCCCCCACCTTTCATGCT Mastacembelus GGGCTCATTAAGTCGCTCAACTCATAGAGAGGAACTTTCCCCCACCTTTCATGCT L.santhopterus GGGCTCATTAAGTCGCTCAACTCATAGAGAGGAACTTTCCCCCACCTTTCATGCT Mastacembelus GGGCTCATTAAGTCGCTCAACTCATAGAGAGGAACT	C.regium	TTACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACGCCTCGACTCAT
A. grypus TTACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACGCCTCGACTC L.esocinus TTACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACGCCTCGACTC A. marmid CGGTCAACTTTGGAAATGAAAGAAACGGTTGTTTTGGGTTTTGGCGGCCCTCACG L.xanthopterus CGGTCAACTTTGGAAATGAAAGAAACGGTTGTTTTTGGGTTTTGGCGGCCCTCACG L.santhopterus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACG C.carpio CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGCTGTTTGGCGGCCCTCACG C.carpio CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGCTTTGGCGGCCCTCACG C.grgium CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGCGTTTTGGCGGCCCTCACG C.grgium CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGCGTTTTGGCGGCCCTCACG C.grypus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTGGCGTTTTGGCGGCCCTCACG C.secinus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTGGCGTTTTGGCGGCCCTCACG A.marmid GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCACCTTTCATGCT C.trutta CGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCACCTTTCATGCT L.barbulus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCACCTTTCATGCT C.arpio GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCACCTTTCATGCT C.arpio GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCACCTTTCATGCT C.grgium GGGCTCCATTAAGTCGCTCAAGCTGAAGAGGAACTTTCCCCCACCTTTCATGCT C.trutta CG	C.luteus	TTACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACGCCTCGACTCAT
L.esocinus TTACGACTCATCAACACGCCCGCATATCCAGAAATGGAACGGCGGGACGCCTCGACTC A.marmid CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTTTTGGGGTTTTGGCGGCCCTCACG L.xanthopterus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTTTTGGGTTTTGGCGGCCCTCACG M.mastacembelus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTTTTGGGTTTTGGCGGCCCTCACG L.barbulus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACG C.regium CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGCTGGC	A.grypus	TTACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACGCCTCGACTCAT
A.marmid CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACG C.trutta CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACG L.xanthopterus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACG C.barbulus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACG C.carpio CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACG C.luteus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACG C.luteus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACG C.luteus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACG L.sorbulus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACG L.sorbulus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACG L.sorbulus CGGTCAATTAGATCAGCTGCTCAACTCATAGAGAGGAACTTTCCCCCCACCTTTCATGCT M.marmid GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCCACCTTTCATGCT L.santhopterus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCACCTTTCATTGCT M.mastacembelus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCACCTTTCATGCT L.santhopterus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCACCTTTCATGCT C.qregium GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCCACCTTTCATGCT C.sarpio GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCCACCTTTCATGCT C.trutt	L.esocinus	TTACGACTCATCAACACGCCCGCATATCCAGAAATGGAACGGCGGGACGCCTCGACTCAT
A.marmid CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACG C.trutta CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACG L.xanthopterus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACG C.arpio CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACG C.carpio CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACG C.regium CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACG C.regium CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACG A.grypus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACG L.esocinus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACG A.marmid GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCCACCTTTCATGCT. C.trutta GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCCACCTTTCATGCT. L.santhopterus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCACCTTTCATGCT. M.mastacembelus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATGCT. C.carpio GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCACCTTTCATGCT. C.cargium GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCACCTTTCATGCT. C.grupus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCCACCTTTCATGCT. C.grupus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCCACCTTTCATGCT. C.grupus		••••••••••••••••••••••••
C.trutta CGGTCAACTITGGAAATGAAAAGAAACGGTTGTGTTTGGGTTTGGCGCCCTCACG L.xanthopterus CGGTCAACTITGGAAATGAAAGAAACGGTTGTGTTTGGGTTTGGCGCCCCTACG C.barbulus CGGTCAACTITGGAAATGAAAGAAACGGTTGTGTTTGGGTTTGGCGCCCCTACG C.carpio CGGTCAACTITGGAAATGAAAGAAACGGTTGTGTTTGGGTTTGGCGCCCCTACG C.regium CGGTCAACTITGGAAATGAAAAGAAACGGTTGTGTTTGGGTTTGGCGGCCCTCACG C.luteus CGGTCAACTITGGAAATGAAAAGAAACGGTTGTGTTTGGGTTTGGCGGCCCTCACG A.grypus CGGTCAACTITGGAAATGAAAAGAAACGGTTGTGTTTGGGTTTGGCGGCCCTCACG L.esocinus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTGGGTTTGGCGGCCCTCACG C.trutta GGGCTCAATTTGGAAATGAAAAGAAACGGTTGTGTTTGGGTTTGGCGGCCCTCACG C.trutta GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCCACCTTTCATGCT, L.xanthopterus GGGCTCATTAAGTCTGCTCACTCATAGAGAGGAACTTTCCCCCCACCTTTCATGCT, C.carpio GGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCCACCTTTCATGCT, C.carpio GGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCACCTTTCATGCT, C.regium GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCACCTTTCATTGCT, C.luteus GGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCACCTTTCATTGCT, C.luteus GGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT, A.grypus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT, A.grypus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT, C.trutta CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGAGGCACCGAAGTGGACACCGTTGTTGA L.xanthopterus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT, A.grypus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT, CACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTGAA L.xanthopterus CGACGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTGAA L.santhopterus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA L.barbulus CGACGGTCCGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTGA C.cregium CGACGGTCCGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTGA C.regium CGACGGTCCGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTGA L.esocinus CGACGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTGA L.esocinus CGACGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTGAA L.esocinus CGACGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTGAA	A.marmid	CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACGCA
L.xanthopterusCGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGCCCCTACGM.mastacembelusCGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGCTTTTGGCGCCCCTACGC.carpioCGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCCTACGC.regiumCGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCCTCACGC.luteusCGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACGA.grypusCGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACGL.esocinusCGGTCAACTTTGGAATGAAAAGAAACGGTTGTGTTTTGGCTTTGGCGGCCCTCACGA.marmidGGGCTCATTAAGTCTGCTCACTCATAGAGAGGAACTTTCCCCCCACCTTTCATTGCTC.truttaGGGCTCATTAAGTCTGCTCACTCATAGAGAGGAACTTTCCCCCCACCTTTCATTGCTL.santhopterusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCACCTTTCATTGCTL.barbulusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCCACCTTTCATTGCTC.regiumGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCTC.grypusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCTC.grypusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCTC.grypusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCTC.grypusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCTC.grypusGGGCTCCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCCACCTTTCATTGCTA.marmidCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTGAAL.santhopterusGGGCTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTGAAM.mastacembelusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTGAAL.barbulusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTGAAC.carpioCGACGGTCCGGCGATAGCTAGGTGAGG	C.trutta	CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACGCA
M.mastacembelus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGGTTTTGGCGGCCCTCACG L.barbulus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACG C.carpio CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGCGTCCTCACG C.regium CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGCGGCCCTCACG C.luteus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGCGTCTCACG A.grypus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGCGTTTTGGCGGCCCTCACG L.esocinus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGCGTTTTGGCGGCCCTCACG A.marmid GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCCACCTTTCATTGCT C.trutta GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCCACCTTTCATTGCT M.mastacembelus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT L.barbulus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT C.carpio GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT C.luteus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT C.luteus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT C.luteus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT C.sarpio GGCCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT C.trutta CGACGGTCCGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTGA A.marmid CGACG	L.xanthopterus	CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACGCA
L.barbulusCGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGCCCCTCACGC.carpioCGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACGC.luteusCGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACGA.grypusCGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACGL.esocinusCGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACGA.marmidGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCCACCTTTCATTGCT.C.truttaGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCCACCTTTCATTGCT.L.santhopterusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT.M.mastacembelusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT.C.carpioGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT.C.regiumGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT.A.marmidCGACGGTCCGGCGATAGCTAGCTAGAGGGGAACTTTCTCCCCACCTTTCATTGCT.C.luteusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT.A.marmidCGACGGTCCGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTGAC.truttaCGACGGTCCGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAL.santhopterusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT.A.marmidCGACGGTCCGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAM.mastacembelusCGACGGTCCGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAL.santhopterusCGACGGTCCGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAM.mastacembelusCGACGGTCCGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAC.carpioCGACGGTCCGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTGAC.carpioCGACGGTCCGGGCGATAGCT	M.mastacembelus	CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACGCA
C.carpioCGGTCAACTITGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACGC.regiumCGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACGA.grypusCGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTGGGTTTTGGCGGCCCTCACGL.esocinusCGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTGGGTTTTGGCGGCCCTCACGC.truttaCGGCTCATTAAGTCTGCTCACTCATAGAGAGGAACTTTCCCCCCACCTTTCATTGCTL.xanthopterusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCACCTTTCATTGCTM.mastacembelusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCACCTTTCATTGCTC.crugiumGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCTC.carpioGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCTC.luteusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCTA.marmidCGACGGTCCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCCACCTTTCATTGCTC.luteusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCTA.marmidCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTGAC.truttaCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAM.mastacembelusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAM.mastacembelusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAC.carpioCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAC.carpioCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAC.regiumCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAC.carpioCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAC.regiumCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAC.regiumCGACGGTCCGGGCGATAGCTAGGTGAGGCGTA	L.barbulus	CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACGCA
C.regium CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACG C.luteus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACG A.grypus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACG C.sesocinus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACG CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACG CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGCTTTGGCGGCCCTCACG CGGTCAACTTTAGGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCACCTTTCATTGCT. C.trutta GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCACCTTTCATTGCT. GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCACCTTTCATTGCT. C.carpio GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. C.regium GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. C.regium GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. C.regium GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. C.luteus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. C.grypus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. L.esocinus GGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. C.trutta CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA L.xanthopterus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA CCACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.carpio CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.carpio CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.acpium CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA CACCGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA CACCGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA CACCGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA CACCGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA CACCGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA CACCGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA CACCGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA CACCGTCCGGCCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA CACCGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACA	C.carpio	CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACGCA
C.luteusCGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACGA.grypusCGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACGL.esocinusCGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACGA.marmidGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCCACCTTTCATTGCT.C.truttaGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCACCTTTCATTGCT.L.xanthopterusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT.M.mastacembelusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT.L.barbulusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT.C.regiumGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT.A.marmidCGACGGTCCGGCGATAGCTAGGTGAGGCGTAGACGGCCAAAGTGGACACCGTTGTTGAL.santhopterusGGGCTCCGGCGATAGCTAGGTGAGGGCGTAGACGCCAAAGTGGACACCGTTGTTGAAM.mastacembelusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAL.santhopterusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAAM.mastacembelusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAAL.barbulusCGACGGTCCGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAAC.carpioCGACGGTCCGGCCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAAC.sergiumCGACGGTCCGGCCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAAC.luteusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAAL.socinusCGACGGTCCGGCCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAAC.sergiumCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAAL.socinusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAAC.sergium <t< td=""><td>C.regium</td><td>CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACGCA</td></t<>	C.regium	CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACGCA
A.grypus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACG L.esocinus CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACG A.marmid GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCCACCTTTCATTGCT. C.trutta GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCCACCTTTCATTGCT. L.xanthopterus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. M.mastacembelus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. L.barbulus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. C.regium GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. C.luteus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. A.marmid CGACGGTCCGGCGATAGCTAGGTGAGGCGTAGACGGCCAAAGTGGACACCGTTGTTGA C.trutta CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA L.santhopterus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA M.mastacembelus CGACGGTCCGGCGATAGCTAGGTGAGGCGTAGACGCCCAAAGTGGACACCGTTGTTGA L.barbulus CGACGGTCCGGCCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.arpio CGACGGTCCGGCCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.arpio CGACGGTCCGGCCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.arpio CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA	C.luteus	CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACGCA
L.esocinusCGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACGA.marmidGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCCACCTTTCATTGCT.C.truttaGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCCACCTTTCATTGCT.L.xanthopterusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCCACCTTTCATTGCT.M.mastacembelusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCCACCTTTCATTGCT.C.carpioGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCCACCTTTCATTGCT.C.regiumGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCCACCTTTCATTGCT.C.luteusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCCACCTTTCATTGCT.A.marmidCGACGGTCCGGCGATAGCTGCTCAACTCATAGAGAGGAACTTTCTCCCCCACCTTTCATTGCT.A.marmidCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAL.santhopterusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAM.mastacembelusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAL.barbulusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAC.regiumCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAC.regiumCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAC.luteusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAC.luteusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAL.socinusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAC.serpioCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAC.luteusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAL.socinusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGACACGGTCCGGGCGATAGCTAGGTGAGG	A.grypus	CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACGCA
A.marmid GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCCACCTTTCATTGCT. C.trutta GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCCACCTTTCATTGCT. L.xanthopterus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCCACCTTTCATTGCT. M.mastacembelus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCCACCTTTCATTGCT. L.barbulus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. C.regium GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. C.regium GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. C.luteus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. A.grypus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. L.socinus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. A.marmid CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA L.xanthopterus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA M.mastacembelus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA L.barbulus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.arpio CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.regium CGACGGTCCGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.guim CGACGGTCCGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA <tr< td=""><td>L.esocinus</td><td>CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACGCA</td></tr<>	L.esocinus	CGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGCCCTCACGCA
A.marmidGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCCACCTTTCATTGCT.C.truttaGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCCACCTTTCATTGCT.L.xanthopterusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT.M.mastacembelusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT.L.barbulusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT.C.carpioGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT.C.regiumGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT.C.luteusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT.A.grypusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT.L.esocinusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT.A.marmidCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAAL.xanthopterusGGACGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAAL.barbulusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAAL.barbulusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAAL.carpioCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAAC.regiumCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAAC.garpioCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAAC.garpioCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAAC.garpioCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAAC.garpioCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAAC.garpioCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAAC.garpioCGACGGTCCGGGC		•••••••••••••••••••••••••••••••••••••••
C.trutta GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCACCTTTCATTGCT. L.xanthopterus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCCACCTTTCATTGCT. M.mastacembelus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCCACCTTTCATTGCT. L.barbulus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCCACCTTTCATTGCT. C.carpio GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCCACCTTTCATTGCT. C.regium GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCCACCTTTCATTGCT. A.grypus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCCACCTTTCATTGCT. L.esocinus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. L.esocinus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. L.socinus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. L.socinus GGGCTCCATAGCTAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAA C.trutta CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAA L.xanthopterus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAA L.barbulus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAA C.carpio CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAA C.regium CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAA C.luteus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAA A.grypus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCCAAAGTGGACACCGTTGTTGAA L.socinus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAA	A.marmid	GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCCACCTTTCATTGCTAC
L.xanthopterusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT.M.mastacembelusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCCACCTTTCATTGCT.L.barbulusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCCACCTTTCATTGCT.C.carpioGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCCACCTTTCATTGCT.C.regiumGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCCACCTTTCATTGCT.C.luteusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCCACCTTTCATTGCT.A.grypusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCCACCTTTCATTGCT.L.esocinusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCCACCTTTCATTGCT.A.marmidCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAAC.truttaCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAAL.xanthopterusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAAM.mastacembelusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAAL.barbulusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAAC.carpioCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAAC.regiumCGACGGTCCGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAAC.luteusCGACGGTCCGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAAA.grypusCGACGGTCCGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAAL.esocinusCGACGGTCCGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAAL.esocinusCGACGGTCCGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAA	C.trutta	GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCCACCTTTCATTGCTAC
M.mastacembelusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCTL.barbulusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCTC.carpioGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCTC.regiumGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCTA.grypusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCTL.esocinusGGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCTA.marmidCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAC.truttaCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAL.xanthopterusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAL.barbulusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAC.carpioCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAC.regiumCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAC.luteusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAL.socinusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAL.esocinusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAL.esocinusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAL.esocinusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAL.esocinusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAL.esocinusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA	L.xanthopterus	GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCTAC
L.barbulus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. C.carpio GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. C.regium GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. A.grypus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. L.esocinus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. C.trutta GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. C.trutta CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA L.xanthopterus CGACGGTCCGGGCGATAGCTAGGTGAGGGCGTAGACGCCAAAGTGGACACCGTTGTTGA L.barbulus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.carpio CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.regium CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.luteus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.luteus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.luteus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.sepium CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.luteus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.luteus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.sepium CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.luteus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.sepinus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.acgfTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.acgfTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA	M.mastacembelus	GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCTAC
C.carpio GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. C.regium GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. C.luteus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. A.grypus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. L.esocinus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. C.trutta GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. C.trutta CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA L.xanthopterus CGACGGTCCGGGCGATAGCTAGGTGAGGGCGTAGACGCCAAAGTGGACACCGTTGTTGA L.barbulus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.cregium CGACGGTCCGGGCGATAGCTAGGTGAGGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.luteus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA A.grypus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA L.esocinus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.luteus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.sepium CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.luteus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.luteus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA L.esocinus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA	L.barbulus	GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCTAC
C.regium GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. C.luteus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. A.grypus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. L.esocinus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT. C.trutta CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA L.xanthopterus CGACGGTCCGGGCGATAGCTAGGTGAGGGCGTAGACGCCAAAGTGGACACCGTTGTTGA L.barbulus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.carpio CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.regium CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.luteus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA A.grypus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA L.esocinus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA	C.carpio	GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCTAC
C.luteus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATGCT. A.grypus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATGCT. L.esocinus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATGCT. A.marmid CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAA C.trutta CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAA L.xanthopterus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAA M.mastacembelus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAA L.barbulus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAA C.regium CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAA C.luteus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAA A.grypus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAA L.esocinus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAA	C.regium	GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCTAC
A.grypus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATGCT. L.esocinus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATGCT. A.marmid CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.trutta CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA L.xanthopterus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA M.mastacembelus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA L.barbulus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.regium CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.luteus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA A.grypus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA L.esocinus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA	C.luteus	GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCTAC
L.esocinus GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCT A.marmid CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA L.xanthopterus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA L.barbulus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA L.barbulus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.carpio CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.regium CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.luteus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA A.grypus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA L.esocinus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA	A.grypus	GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCTAC
A.marmidCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAC.truttaCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAL.xanthopterusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAM.mastacembelusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAL.barbulusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAC.carpioCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAC.regiumCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAC.luteusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAA.grypusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAL.esocinusCGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA	L.esocinus	GGGCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTTCATTGCTAC
A.marmid CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCCAAAGTGGACACCGTTGTTGA C.trutta CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCCAAAGTGGACACCGTTGTTGA L.xanthopterus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCCAAAGTGGACACCGTTGTTGA M.mastacembelus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA L.barbulus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.carpio CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.regium CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.luteus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA A.grypus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA L.esocinus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA		
C.trutta CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA L.xanthopterus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA M.mastacembelus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA L.barbulus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.carpio CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.regium CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.luteus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA A.grypus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA L.esocinus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA	A.marmid	CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAGA
L.xanthopterus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA M.mastacembelus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA L.barbulus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.carpio CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.regium CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.luteus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA A.grypus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA L.esocinus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA	C.trutta	CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAGA
M.mastacembelus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA L.barbulus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.carpio CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.regium CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.luteus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA A.grypus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA L.esocinus CGACGGTCCGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA	L.xanthopterus	CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAGA
L.barbulus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.carpio CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.regium CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.luteus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA A.grypus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA L.esocinus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA	M.mastacembelus	CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAGA
C.carpio CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.regium CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.luteus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA A.grypus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA L.esocinus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA	L.barbulus	CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAGA
C.regium CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA C.luteus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA A.grypus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA L.esocinus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA	C.carpio	CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAGA
C.luteus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA A.grypus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA L.esocinus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA	C.regium	CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAGA
A.grypus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA L.esocinus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA	C.luteus	CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAGA
L.esocinus CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGA	A.grypus	CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAGA
	L.esocinus	CGACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAGA

Fig. (17A): Nucleotide sequences alignment (ITS-1) of *Contracaecum* larvae obtained in different fish species in the present study.

A.marmid	ATAACGAGGAAATGAGCGCCATCGATCCGCCTTTCTAGCATATCGGATCACTCAC
C.trutta	ATAACGAGGAAATGAGCGCCATCGATCCGCCTTTCTAGCATATCGGATCACTCAC
L.xanthonterus	ATAACGAGGAAATGAGCGCCATCGATCCGCCTTTCTAGCATATCGGATCACTCAC
M.mastacembelus	ATAACGAGGAAATGAGCGCCATCGATCCGCCTTTCTAGCATATCGGATCACTCAC
L.barbulus	ATAACGAGGAAATGAGCGCCATCGATCCGCCTTTCTAGCATATCGGATCACTCAC
C.carnin	ATAACGAGGAAATGAGCGCCATCGATCCGCCTTTCTAGCATATCGGATCACTCAC
C.regium	ATAACGAGGAAATGAGCGCCATCGATCCGCCTTTCTAGCATATCGGATCACTCAC
Cluteus	ATAACGAGGAAATGAGCGCCATCGATCCGCCTTTCTAGCATATCGGATCACTCAC
A grypus	ATAACGAGGAAATGAGCGCCATCGATCCGCCTTTCTAGCATATCGGATCACTCAC
Lesocinus	ΑΤΑΔΟΓΘΑΘΟΑΔΑΤΘΑΘΟΟΟ ΑΤΟΘΑΤΟΟΟΟ ΤΤΤΟ ΤΑΘΟΑΤΑΤΟΘΟΑΤΟΑΟΤΟΑΟΤΟΟΟ
Licoulius	
A.marmid	CTCAACACACAGCAAGCCATAAGCCATTGTCAGCCAAATGAAAAACAGCCGACGGCTGCC
C.trutta	CTCAACACACAGCAAGCCATAAGCCATTGTCAGCCAAATGAAAAACAGCCGACGGCTGCC
L.xanthopterus	CTCAACACACAGCAAGCCATAAGCCATTGTCAGCCAAATGAAAAACAGCCGACGGCTGCC
M.mastacembelus	CTCAACACACAGCAAGCCATAAGCCATTGTCAGCCAAATGAAAAACAGCCGACGGCTGCC
L.barbulus	CTCAACACACAGCAAGCCATAAGCCATTGTCAGCCAAATGAAAAACAGCCGACGGCTGCC
C.carpio	CTCAACACACAGCAAGCCATAAGCCATTGTCAGCCAAATGAAAAACAGCCGACGGCTGCC
C.regium	CTCAACACACAGCAAGCCATAAGCCATTGTCAGCCAAATGAAAAACAGCCGACGGCTGCC
C.luteus	CTCAACACACAGCAAGCCATAAGCCATTGTCAGCCAAATGAAAAACAGCCGACGGCTGCC
A.grvpus	CTCAACACACAGCAAGCCATAAGCCATTGTCAGCCAAATGAAAAACAGCCGACGGCTGCC
L.esocinus	CTCAACACACAGCAAGCCATAAGCCATTGTCAGCCAAATGAAAAACAGCCGACGGCTGCC

A.marmid	ACCACATGTGTATGACTCGCTGCATGGCTCACGATTACGCGCAAATGGAATTTATGCACG
C.trutta	ACCACATGTGTATGACTCGCTGCATGGCTCACGATTACGCGCAAATGGAATTTATGCACG
L.xanthopterus	ACCACATGTGTATGACTCGCTGCATGGCTCACGATTACGCGCAAATGGAATTTATGCACG
M.mastacembelus	ACCACATGTGTATGACTCGCTGCATGGCTCACGATTACGCGCAAATGGAATTTATGCACG
L.barbulus	ACCACATGTGTATGACTCGCTGCATGGCTCACGATTACGCGCAAATGGAATTTATGCACG
C.carpio	ACCACATGTGTATGACTCGCTGCATGGCTCACGATTACGCGCAAATGGAATTTATGCACG
C.regium	ACCACATGTGTATGACTCGCTGCATGGCTCACGATTACGCGCAAATGGAATTTATGCACG
C.luteus	ACCACATGTGTATGACTCGCTGCATGGCTCACGATTACGCGCAAATGGAATTTATGCACG
A.grypus	ACCACATGTGTATGACTCGCTGCATGGCTCACGATTACGCGCAAATGGAATTTATGCACG
L.esocinus	ACCACATGTGTATGACTCGCTGCATGGCTCACGATTACGCGCAAATGGAATTTATGCACG

A.marmid	TAAGGAGACTTTTTGGTTTGGCTCGATAATGATCCTTCCG
C.trutta	TAAGGAGACTTTTTGGTTTGGCTCGATAATGATCCTTCCG
L.xanthopterus	TAAGGAGACTTTTTGGTTTGGCTCGATAATGATCCTTCCG
M.mastacembelus	TAAGGAGACTTTTTGGTTTGGCTCGATAATGATCCTTCCG
L.barbulus	TAAGGAGACTTTTTGGTTTGGCTCGATAATGATCCTTCCG
C.carpio	TAAGGAGACTTTTTGGTTTGGCTCGATAATGATCCTTCCG
C.regium	TAAGGAGACTTTTTGGTTTGGCTCGATAATGATCCTTCCG
C.luteus	TAAGGAGACTTTTTGGTTTGGCTCGATAATGATCCTTCCG
A.grypus	TAAGGAGACTTTTTGGTTTGGCTCGATAATGATCCTTCCG

L.esocinus	TAAGGAGACTTTTTGGTTTGGCTCGATAATGATCCTTCCG

Fig. (17B): Nucleotide sequences alignment (ITS-1) of *Contracaecum* larvae obtained in different fish species in the present study (continued).

Amounted	****************
A.marmid	CGCTGGCACGTCTGGCTGAGGGTCGAAATATTCAATACTATCCGCACAAT
A.grypus	CGCTGGCACGTCTGGCTGAGGGTCGAAATATTCAATACTATCCGCACAAT
C.trutta	CGCTGGCACGTCTGGCTGAGGGTCGAAATATTCAATACTATCCGCACAAT
C. Luteus	CGCTGGCACGTCTGGCTGAGGGTCGAAATATTCAATACTATCCGCACAAT
C.regium	CGCTGGCACGTCTGGCTGAGGGTCGAAATATTCAATACTATCCGCACAAT
C.carpio	CGCTGGCACGTCTGGCTGAGGGTCGAAATATTCAATACTATCCGCACAAT
L.barbulus	CGCTGGCACGTCTGGCTGAGGGTCGAAATATTCAATACTATCCGCACAAT
L.esocinus	CGCTGGCACGTCTGGCTGAGGGTCGAAATATTCAATACTATCCGCACAAT
M.mastacembelus	CGCTGGCACGTCTGGCTGAGGGTCGAAATATTCAATACTATCCGCACAAT
L.xanthopterus	CGCTGGCACGTCTGGCTGAGGGTCGAAATATTCAATACTATCCGCACAAT

A.marmid	GCTTCAGACGAAGCGTGTGGTGGTGCTTTCGACAAGCAGTGTCCCTTTGGGGC
A. grypus	GCTTCAGACGAAGCGTGTGGTGGTGCTTTCGACAAGCAGTGTCCCTTTGGGGC
C.trutta	GCTTCAGACGAAGCGTGTGGTGGTGCTTTCGACAAGCAGTGTCCCTTTGGGGC
Cluteus	CCTTCAGACGAAGCGTGTGGTGCTTTCGACAAGCAGTGTCCCTTTGGGGC
Cregium	CCTTCAGACGAAGCGTGTGGTGCTTTCGACAAGCAGTGTCCCTTTGGGGC
C. cappio	CETTCAGACGAAGCGTGTGGTGCTTTCGACAAGCAGTGTCCCTTTGGGGC
L hanhulur	
L.orocipus	GETTEAGACGAAGEGTGTGGTGETTTEGACAAGEAGTGTEECTTTGGGGG
M. mastasambalus	GETTEAGACGAAGEGTGTGGTGGTGGTGCTTTCGAGAGAGCAGTGTCCCTTTGGGGGC
M.mastacemberus	GETTEAGACGAAGEGTGGTGGTGGTGGTGGTGGCAGAAGEAGTGTCCCTTTGGGGGC
L.xanthopterus	GUTTCAGACGAAGCGTGTGGTGGTGCTTTCGACAAGCAGTGTCCCTTTGGGGGC
A.marmid	GCTCCTTGTTTGGTTTGAACGGCAACTTATTGCAAAGATTTACTCGGTAA
A.grypus	GCTCCTTGTTTGGTTTGAACGGCAACTTATTGCAAAGATTTACTCGGTAA
C.trutta	GCTCCTTGTTTGGTTTGAACGGCAACTTATTGCAAAGATTTACTCGGTAA
C.luteus	GCTCCTTGTTTGGTTTGAACGGCAACTTATTGCAAAGATTTACTCGGTAA
C.regium	GCTCCTTGTTTGGTTTGAACGGCAACTTATTGCAAAGATTTACTCGGTAA
C.carpio	GCTCCTTGTTTGGTTTGAACGGCAACTTATTGCAAAGATTTACTCGGTAA
L.barbulus	GCTCCTTGTTTGGTTTGAACGGCAACTTATTGCAAAGATTTACTCGGTAA
L.esocinus	GCTCCTTGTTTGGTTTGAACGGCAACTTATTGCAAAGATTTACTCGGTAA
M.mastacembelus	GCTCCTTGTTTGGTTTGAACGGCAACTTATTGCAAAGATTTACTCGGTAA
L.xanthopterus	GCTCCTTGTTTGGTTTGAACGGCAACTTATTGCAAAGATTTACTCGGTAA

A marmid	GENGENNINNIGGEEGINNGIGIGIGIGIGIGIGIGIGIG
A govous	CLACCAATAATGGCCGTAAGTGTGTGTGTGTGTGTGTGTGTG
C toutto	GCAGCAATAATGGCCGTAAGTGTGTGTGTGTGTGTGTGTG
Clutous	GCAGCAATAATGGCCGTAAGTGTGTGTGTGTGTGTGTGTG
C. nordium	GCAGCAATAATGGCCGTAAGTGTGTGTGTGTGTGTGTGTG
C.regium	GLAGLAATAATGGCCGTAAGTGTGTGTGTGTGTGTGTGTGTGTGT
L. bachulu	GLAGLAATAATGGCCGTAAGTGTGTGTGTGTGTGTGTGTGTGTGT
L.Darbuius	GLAGLAATAATGGLLGTAAGTGTGTGTGAGTGATTGTGTALGTLCCTCGATG
L.esocinus	GCAGCAATAATGGCCGTAAGTGTGTGTGGGGTGATTGTGTACGTCCCTCGATG
M.mastacembelus	GCAGCAATAATGGCCGTAAGTGTGTGTGGGGGGGTGATTGTGTACGTCCCTCGATG
L.xanthopterus	GCAGCAATAATGGCCGTAAGTGTGTGAGTGATTGTGTACGTCCCTCGATG

Fig. (18A): Nucleotide sequences alignment (ITS-2) of *Contracaecum* larvae obtained in different fish species in the present study.

A.marmid	CGGCCCCCAGTATTTGTTGACTGCCTCTGGTGGTGACTGGGGGTTAAGTA
A.grypus	CGGCCCCCAGTATTTGTTGACTGCCTCTGGTGGTGACTGGGGGTTAAGTA
C.trutta	CGGCCCCCAGTATTTGTTGACTGCCTCTGGTGGTGACTGGGGGGTTAAGTA
C.luteus	CGGCCCCCAGTATTTGTTGACTGCCTCTGGTGGTGACTGGGGGGTTAAGTA
C.regium	CGGCCCCCAGTATTTGTTGACTGCCTCTGGTGGTGACTGGGGGGTTAAGTA
C.carpio	CGGCCCCCAGTATTTGTTGACTGCCTCTGGTGGTGACTGGGGGGTTAAGTA
L.barbulus	CGGCCCCCAGTATTTGTTGACTGCCTCTGGTGGTGACTGGGGGTTAAGTA
L.esocinus	CGGCCCCCAGTATTTGTTGACTGCCTCTGGTGGTGACTGGGGGGTTAAGTA
M.mastacembelus	CGGCCCCCAGTATTTGTTGACTGCCTCTGGTGGTGACTGGGGGGTTAAGTA
L.xanthopterus	CGGCCCCCAGTATTTGTTGACTGCCTCTGGTGGTGACTGGGGGGTTAAGTA

A.marmid	TCGGATTATCGAAAGAATGTGACATGTCTTATACGGTTATGTGCTTTTGA
A.grypus	TCGGATTATCGAAAGAATGTGACATGTCTTATACGGTTATGTGCTTTTGA
C.trutta	TCGGATTATCGAAAGAATGTGACATGTCTTATACGGTTATGTGCTTTTGA
C.luteus	TCGGATTATCGAAAGAATGTGACATGTCTTATACGGTTATGTGCTTTTGA
C.regium	TCGGATTATCGAAAGAATGTGACATGTCTTATACGGTTATGTGCTTTTGA
C.carpio	TCGGATTATCGAAAGAATGTGACATGTCTTATACGGTTATGTGCTTTTGA
L.barbulus	TCGGATTATCGAAAGAATGTGACATGTCTTATACGGTTATGTGCTTTTGA
L.esocinus	TCGGATTATCGAAAGAATGTGACATGTCTTATACGGTTATGTGCTTTTGA
M. astacembelus	TCGGATTATCGAAAGAATGTGACATGTCTTATACGGTTATGTGCTTTTGA
L.xanthopterus	TCGGATTATCGAAAGAATGTGACATGTCTTATACGGTTATGTGCTTTTGA

A.marmid	CCTCAGCTCAGTCGTGATTACCCGCTGAATTTAAGCATATAATTAAGCGG
A.grypus	CCTCAGCTCAGTCGTGATTACCCGCTGAATTTAAGCATATAATTAAGCGG
C.trutta	CCTCAGCTCAGTCGTGATTACCCGCTGAATTTAAGCATATAATTAAGCGG
C.luteus	CCTCAGCTCAGTCGTGATTACCCGCTGAATTTAAGCATATAATTAAGCGG
C.regium	CCTCAGCTCAGTCGTGATTACCCGCTGAATTTAAGCATATAATTAAGCGG
C.carpio	CCTCAGCTCAGTCGTGATTACCCGCTGAATTTAAGCATATAATTAAGCGG
L.barbulus	CCTCAGCTCAGTCGTGATTACCCGCTGAATTTAAGCATATAATTAAGCGG
L.esocinus	CCTCAGCTCAGTCGTGATTACCCGCTGAATTTAAGCATATAATTAAGCGG
M.mastacembelus	CCTCAGCTCAGTCGTGATTACCCGCTGAATTTAAGCATATAATTAAGCGG
L.xanthopterus	CCTCAGCTCAGTCGTGATTACCCGCTGAATTTAAGCATATAATTAAGCGG

Fig. (18B): Nucleotide sequences alignment (ITS-2) of *Contracaecum* larvae obtained in different fish species in the present study (continued).

Amond	CTGTGGTTAGCACCACACATTCCGAACATTGACCATAAAAAAACTCCTACAATGGGGAAA
C. Jutour	CTGTGGTTAGCACCACACATTGCCCGTAGAGAGCTCCTACAATGGGGAAA
L hanhulur	CTGTGGTTAGCACCACAGATTTCCGAGCATTGGCCGTAGAGAGCTCCTACAATAGGAGAA
L.vanthontecus	CTGTGGTTAGCACCACAGATTTCCGAGCATTGGCCGTAGAGAGCTCCTACAGTAGGAGAA
C nogium	CTGTGGTTAGCACCACAGATTTCCGAGCATTGGCCGTAAAAAACTCCTACAATAGGAAAA
A grunus	CTGTGGTTAGCACCACACATTCCCGAGCATTGGCCGTAAAAAAACTCCTACAATAGGAAAA
C trutta	CTGTGGTTAGCACCACACATTCCCGAGCATTGGCCGTAAAAAAACTCCTACAATGGGAAAA
Lesocious	CTGTGGTTAGCACCACAAATTTCCGAGCATTGGCCGTAAAAAAACTCCTACAATAGGAAAA
M mastacombalus	CTGTGGTTAGCACCACACATTICCGAGCATTGGCCGTAAAAAAACTCCTACAATAGGAAAA
C.carnio	CTGTGGTTAGCACCACACATTCCCGAGCATTGGCCGTAAAAAAACTCCTACAATAGGAAAA
crea, pro	
A.marmid	CTATAAGATAAAGTCCTGAGAATACCACTTATAGCATCCAGTTTAATAGAAAGCCTGGGC
C.luteus	CTATAAGATAAAGTCCTAAGAATACCACTTATAGCATCCAGTTTAATAGAAAGCCTAGGC
L.barbulus	CTATAAGATAAAGTCCTAAGAATACCACTTATAGCATCCAGTTTAATAGAAAGCCTGGGC
L.xanthopterus	CTATAAGATAAAGTCCTAAGAATACCACTTATAGCATCCAGTTTAATAGAAAGCCTGGGC
C.regium	CTATAAGATAAAGTCCTAAGAATACCACTTATAGCATCCAGTTTAATAGAAAGCCTGGGC
A.grypus	CTATAAGATAAAGTCCTAAGAATACCACTTATAGCATCCAGTTTAATAGAAAGCCTGGGC
C.trutta	CTATAAGATAAAGTCCTAAGAATACCACTTATAGCATCCAGTTTAATAGAAAGCCTGGGC
L.esocinus	CTATAAGATAAAGTCCTAAGAATACCACTTATAGCATCCAGTTTAATAGAAAGCCTAGGC
M.mastacembelus	CTATAAGATAAAGTCCTAAGAATACCACTTATAGCATCCAGTTTAATAGAAAGCCTAGGC
C.carpio	CTATAAGATAAAGTCCTAAGAATACCACTTATAGCATCCAGTTTAATAGAAAGCCTAGGC
A.marmid	AAAGCTCAAGAGTGGATAACATCACCCGAAGTAATACAAAAACGAATATTAGTATCACAA
C.luteus	AAAGCTCAAGAGTGGATAACATCACCCGAGGTAATACAAAAACGAATGTTAGTATCGCAA
L.barbulus	AAAGCTCAAGAGTGGATAACATCACCCGAGGTAATACAAAAACGAATGTTAGTATCACAA
L.xanthopterus	AAAGCTCAAGAGTGGATAACATCACCCGAGGTAATACAAAAACGAATGTTAGTATCACAA
C.regium	AAAGCTCAAGAGTGGATAACATCACCCGAGGTAATACAAAAACGAATGTTAGTATCACAA
A.grypus	AAAGCTCAAGAGTGGATAACATCACCCGAGGTAATACAAAAACGAATGTTAGTATCACAA
C.trutta	AAAGCTCAAGAGTGGATAACATCACCCGAGGTAATACAAAAACGAATGTTAGTATCACAA
L.esocinus	AAAGCTCAAGAGTGGATAACATCGCCCGAGGTAATACAAAAACGAATGTTAGTATCACAA
M.mastacembelus	AAAGCTCAAGAGTGGATTACATCACCCGAGGTAATACAAAAACGAATGTTAGTATCACAA
C.carpio	AAAGCTCAAGAGTGGATAACATCACCCGAGGTAATACAAAAACGAATGTTAGTATCACAA
A.marmid	GGAACAACACAACGATTATCAACCTCCAAAAGACGGGGCTCCCCCAACTCCAACTGGTCT
C.luteus	GGAACAACACAACGATTATCAACCTCCAAAAGACGGGGCTCCCCCAACTCCAACTGGTCT
L.barbulus	GGAACAACACAACGATTATCAACCTCCAAAAGACGGGGCTCCCCCAACTCCAACTGGTCT
L.xanthopterus	GGAACAACACAACGATTATCAACCTCCAAAAGACGGGGCTCCCCCAACTCCAACTGGTCT
C.regium	GGAACAACACAACGATTATCAACCTCCAAAAGACGGGGCTCCCCCAACTCCAACTGGTCT
A.grypus	GGAACAACACAACGATTATCAACCTCCAAAAGACGGGGCTCCCCCAACTCCAACTGGTCT
C.trutta	GGAACAACACAACGATTATCAACCTCCAAAAGACGGGGCTCCCCCAACTCCAACTGGTCT
L.esocinus	GGAACAACACAACGATTATCAACCTCCAAAAGACGGGGCTCCCCCAACTCCAACTGGTCT
M.mastacembelus	GGAACAACACAACGATTATCAACCTCCAAAAGACGGGGCTCCCCCAACTCCAACTGGTCT
C.carpio	GGAACAACACAACGATTATCAACCTCCAAAAGACGGGGCTCCCCCAACTCCAACTGGTCT
A.marmid	AAAGACTTCATATAAGAATCAAACTCCAAACCGGGGATATCTCTAAACTCATAACTTCAA
C.luteus	AAAGACTTCATATAAGAATCAAACTCCAAACCGGGGATATCCCTAAACTCATAACTTCAA
L.barbulus	AAAGACTTCATATAAGAATCAAACTCCAAACCGGGGATATCCCTAAACTCATAACTTCAA
L.xanthopterus	AAAGACTTCATATAAGAATCAAACTCCAAACCGGGGATATCCCTAAACTCATAACTTCAA
C.regium	AAAGACTTCATATAAGAATCAAACTCCAAACCGGGGGATATCCCTAAACTCATAACTTCAA
A.grypus	AAAGACTTCATATAAGAATCAAACTCCAAACCGGGGATATCCCTAAACTCATAACTTCAA
C.trutta	AAAGACTTCATATAAGAATCAAACTCCAAACCGGGGATATCCCTAAACTCATAACTTCAA
L.esocinus	AAAGACTTCATATAAGAATCAAACTCCAAACCGGGGGATATCCCTAAACTCATAACTTCAA
M.mastacembelus	AAAGACTTCATATAAGAATCAAACTCCAAACCGGGGATATCCCTAAACTCATAACTTCAA
C.carpio	AAAGACTTCATATAAGAATCAAACTCCAAACCGGGGATATCCCTAAACTCATAACTTCAA

Fig. (19A): Nucleotide sequences alignment (COX-2) of *Contracaecum* larvae obtained in different fish species in the present study.

A marmid	TACCATTGATGACCAGTAACCTTCACAGTTAAACTGCTATCAAGGTTTATTAAACCATAA
Clutous	TACCATTGATGACCAGTAACCTTCACAGTTAAACTACTACTATCAAGGTTTATTAAAACCATAA
L hachulus	TACCATTGATGACCAGTGACCTTCACAGTTAAACTACTATCAAGGTTTATTAAACCATAA
L.barbuius	TACCATTGATGACCAGTGACCTTCACAGTTAAACTACTATCAAGGTTTATTAAACCATAA
L.xanthopterus	TACCATIGATGACCAGIGACCITCACAGITAAACTACTATCAAGGITTATTAAACCATAA
C.regium	TACCATIGATGACCAGIGACCITCACAGITAAACTACTATCAAGGITTATTAAACCATAA
A.grypus	TACCATIGATGACCAGIGACCITCACAGITAAACTACTATCAAGGITTATTAAACCATAA
C.trutta	TACCATIGATGACCAGTAACCTTCACAGTTAAACTACTATCAAGGTTTATTAAACCATAA
L.esocinus	TACCATTGATGACCAGTGACCTTCACAGTTAAACTACTATCAAGGTTTATTAAACCATAA
M.mastacembelus	TACCATTGATGACCAGTGACCTTCACAGTTAAACTACTATCAAGGTTTATTAAACCATAA
C.carpio	TACCATTGATGACCAGTAACCTTCACAGTTAAACTACTATCAAGGTTTATTAAACCATAA
A.marmid	TAATAAAGCAGACTCAAAGAAGGGATCATTTGTATAACCAAAATCAAAGTTGGGAAAACA
C.luteus	TAATAAAGCAGACTCAAAGAAGGGATCATTTGTATAACCAAAATCAAAGTTGGGAAAACA
L.barbulus	TAATAAAGCAGACTCAAAGAAGGGATCATTTGTATAACCAAAATCAAAGTTGGGAAAACA
L.xanthopterus	TAATAAAGCAGACTCAAAGAAGGGATCATTTGTATAACCAAAATCAAAGTTGGGAAAACA
C.regium	TAATAAAGCAGACTCAAAGAAGGGATCATTTGTATAACCAAAATCAAAGTTGGGAAAACA
A govous	ΤΑΑΤΑΑΑΑGCAGACTCAAAAGAAGGGATCATTTGTATAACCAAAAATCAAAGTTGGGAAAAACA
C toutta	TAATAAAGCAGACTCAAAGAAGGGATCATTTGTATAACCAAAATCAAAGTTGGGAAAACA
Lesocious	TAATAAAGCAGACTCAAAGAAGGAATCATTTGTATAACCAAAAATCAAAGTTGGGAAAAACA
M. mastasambalus	TAATAAACCACACTCAAACAACCCATCATTTCTATAACCAAAATCAAACTTCCCAAAACA
M.mascacemberus	
C.Carpio	TAA TAAAGCAGACI CAAAGAAGGAATCATTIGTATAACCAAAATCAAAGTI GGGAAAACA
A.marmid	CTACACAAAAGTTCTCCAAATTGATACTCAATCTTCTTACTTTTAAAATAAAAAAGCCCTA
C.luteus	CTACACAAAAGTTCTCCAAATTGATACTCAATCTTCTTACTTTTAAAATAAAAGCGCCTG
L.barbulus	CTACACAAAAGTTCTCCAAATTGATACTCAATCTTCTTACTTTTAAAATAAAAACGCCTG
L.xanthopterus	CTACACAAAAGTTCTCCAAATTGATACTCAATCTTCTTACTTTTAAAATAAAAACGCCTG
C.regium	CTACACAAAAGTTCTCCAAATTGATACTCAATCTTCTTACTTTTAAAATAAAAAACGCCTG
A.grypus	CTACACAAAAGTTCTCCAAATTGATACTCAATCTTCTTACTTTTAAAATAAAAAACGCCTG
C.trutta	CTACACAAAAGTTCTCCAAATTGATACTCAATCTTCTTACTTTTAAAATAAAAAACGCCTG
L.esocinus	CTACACAAAAGTTCTCCAAATTGATACTCAATCTTCTTACTTTTAAAATAAAAAACGCCTG
M.mastacembelus	CTACACAAAAGTTCTCCAAATTGATACTCAATCTTCTTACTTTTAAAATAAAAACGCCTG
C.carpio	CTACACAAAAGTTCTCCAAATTGATACTCAATCTTCTTACTTTTAAAATAAAAAACGCCTG
A.marm1d	AA TAACAAA TAAGAAAA TA TAACAGAAACAAAAGA TAAAACACCGAACAACAAAC TACAA
C.luteus	AATAACAAATAAGAAAATATAACAGAAACAAAAGATAAAACACCGAACAACAAACTACAA
L.barbulus	AATAACAAATAAGAAAATATAACAGAAACAAAAGATAAAACACCGAACAACAAACTACAA
L.xanthopterus	AATAACAAATAAGAAAATATAACAGAAACAAAAGATAAAACACCGAACAACAAACTACAA
C.regium	AATAACAAATAAGAAAATATAACAGAAACAAAAGATAAAACACCGAACAACAAACTACAA
A.grypus	AATAACAAATAAGAAAATATAACAGAAACAAAAGATAAAACACCGAACAACAAACTACAA
C.trutta	AATAACAAATAAGAAAATATAACAGAAACAAAAGATAAAACACCGAACAACAAACTACAA
L.esocinus	AATAACAAATAAGAAAATATAACAGAAACAAAAGATAAAACACCGAACAACAAACTACAA
M.mastacembelus	AATAACAAATAAGAAAATATAACAGAAACAAAAGATAAAACACCGAACAACAAACTACAA
C.carpio	AATAACAAATAAGAAAATATAACAGAAACAAAAGATAAAACACCGAACAACAAACTACAA
A.marmid	TTAAAATTATGAACCAATCT
Cluteus	TTAAAATTATGAACCAATCT
L hachulus	TTAAAATTATGAACCAATCT
Lyanthostonus	TTAAAATTATGAACCAATCT
Cooptur	TTAAAATTATCAACCAATCT
C.regium	TTAAAATTATCAACCAATCT
A.grypus	TANATTATCAACCAATCT
C.trutta	TTAAAATTATGAACCAATCT
L.esocinus	TTAAAATTATGAACCAATCT
M.mastacembelus	TTAAAATTATGAACCAATCT
C.carpio	TTAAAATTATGAACCAATCT

Fig. (19B): Nucleotide sequences alignment (COX-2) of *Contracaecum* larvae obtained in different fish species in the present study (continued).

indicated that sibling species can be differentiated based on the ITS sequences (Jacobs et al., 1997; Zhu et al., 2000; 2001; 2002). The ITS-1 sequences of the obtained larvae (C. rudolphii B) in the present study show 11 (2.46%) nucleotide differences with the previously reported reference gene sequence for the ITS-1 in C. rudolphii A which was examined and deposed in GenBank (Accession number: AJ634782). While, ITS-2 shows 14 (5.22%) nucleotide differences with the C. rudolphii A which previously reported reference gene sequence for the ITS-2 in C. rudolphii A which was examined and deposed in GenBank (Accession number: AJ634785) (Li et al., 2005) (Fig. 20). This clear genetic differentiation support previous sequence analyses (Li et al., 2005) that there are sequence differences (1.8%) in the ITS-1 and (5.1%) in ITS-2 between the sibling species of C. rudolphii A and B (Li et al., 2005). Extending these studies, we investigated that there is no significant sequence variation in the ITS1 and ITS2 within and among the larvae collected from different fish host in the present investigation. The molecular finding of the present investigation support that the present finding larvae belong to *C. rudolphii* type-B.

C.rudolphii-B C.rudolphii-A_AJ634782	ITS-1> TTACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGG TAGTTAACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGG
C.rudolphii-B	ACGCCTCGACTCATCGGTCAACTTTGGAAATGAAAAGAAACGGTTGTGTT
C.rudolphii-A_AJ634782	ACGCCTCGACTCATCGGTCAACTTCAGAAATGAAAAGAAACGGTTGTGTT
C.rudolphii-B	TTGGGTTTTGGCGGCCCTCACGCAGGGCTCATTAAGTCTGCTCAACTCAT
C.rudolphii-A_AJ634782	TTGGGTTTTGGCGGCCCTCACGCAGGGCTCATTAAGTCTGCTCAACTCAT
C.rudolphii-B	AGAGAGGAACTTTCCCCCCACCTTTCATTGCTACCGACGGTCCGGGCGAT
C.rudolphii-A_AJ634782	AGAGAGGAACTTTCTCCCCACCTTTCATTGCTACCGACGGTCCGGGCGAT
C.rudolphii-B	AGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAGAATAACG
C.rudolphii-A_AJ634782	AGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCGTTGTTGAGAATAACG
C.rudolphii-B C.rudolphii-A_AJ634782	AGGAAATGAGCGCCATCGATCCGCCTTTCTAGCATATCGGATCACTCAC
C.rudolphii-B	ТССССТСААСАСАСАGCAAGCCATAAGCCATTGTCAGCCAAATGAAAAA-
C.rudolphii-A_AJ634782	ТССССТСААСАСАСААСААGCCATAAGCCATTGTCAGCCAAATGAAAAAA
C.rudolphii-B	CAGCCGACGGCTGCCACCACATGTGTATGACTCGCTGCATGGCTCACGAT
C.rudolphii-A_AJ634782	CAGCCGACGGCTGCCACCACATGTGTATGACTCGATGCATGGCTCACGAT
C.rudolphii-B	TACGCGCAAATGGAATTTATGCACGTAAGGAGACTTTTTGGTTTGGCTCG
C.rudolphii-A_AJ634782	TACGCGCAAATGGAATTTATGCACGTAAGGAGACTTTTTGGTTTAGCTCG
C.rudolphii-B	ATAATGATCCTTCCG
C.rudolphii-A_AJ634782	AT
	TTC-2>
C.rudolphii-B	CGCTGGCACGTCTGGCTGAGGGTCGAAATATTCAATACTATCCGCACAAT
C.rudolphii-A_AJ634785	
C.rudolphii-B	GCTTCAGACGAAGCGTGTGGTGCTTTCGACAAGCAGTGTCC
C.rudolphii-A_AJ634785	GCTTCAGACGGTTCGTGTGAAGCGTGTGGTGCATTCGACAAGCAGTGTCC
C.rudolphii-B	CTTTGGGGCGCTCCTTGTTTGGTTTGAACGGCAACTTATTGCAAAGATTT
C.rudolphii-A_AJ634785	CTTTGAGGCGCTCCTTGTCTGGTTTGAACGGCAAATTATTGCAAAGATTT
C.rudolphii-B C.rudolphii-A_AJ634785	ACTCGGTAAGCAGCAATAATGGCCGTAAGTGTGTGAGTGA
C.rudolphii-B	CCCTCGATGCGGCCCCCAGTATTTGTTGACTGCCTCTGGTGGTGACTGGG
C.rudolphii-A_AJ634785	CCCTCGATGCGGCCCCCAGTATTTGTTGACTGCCTCTGGTGGTGACTGGG
C.rudolphii-B	CCCTCGATGCGGCCCCCAGTATTTGTTGACTGCCTCTGGTGGTGACTGGG
C.rudolphii-A_AJ634785	CCCTCGATGCGGCCCCCAGTATTTGTTGACTGCCTCTGGTGGTGACTGGG
C.rudolphii-B	GGTTAAGTATCGGATTATCGAAAGAATGTGACATGTCTTATACGGTTATG
C.rudolphii-A_AJ634785	GGTTAAGTATCGGATTATCGAAAGAATGTGACATGTCTTATACGGTTATG
C.rudolphii-B C.rudolphii-A_AJ634785 C.rudolphii-B C.rudolphii-A_AJ634785 C.rudolphii-B C.rudolphii-A_AJ634785	CCCTCGATGCGGCCCCCAGTATTTGTTGACTGCCTCTGGTGGTGACTGGG CCCTCGATGCGGCCCCCAGTATTTGTTGACTGCCTCTGGTGGTGACTGGG GGTTAAGTATCGGATTATCGAAAGAATGTGACATGTCTTATACGGTTATG GGTTAAGTATCGGATTATCGAAAGAATGTGACATGTCTTATACGGTTATG TGCTTTTGACCTCAGCTCAG

Fig. (20): Alignment of the ITS-1 and ITS-2 sequences representing genotype 1 (*Contracaecum rudolphii* B) from the present study and genotype 2 (*Contracaecum rudolphii* A) sequences have been deposited in GeneBank under the accession number AJ634782 and AJ634785 respectively. Nucleotide differences between the aligned sequences are indicated by having no asterisks.

Phylogenetic analysis of Contracaecum larvae

In the phylogenetic analysis, the sequence data aligned with the data sequences of ITS-1, ITS-2 and COX-2 form other different Contracaecum species (different genotypes) and Ascaris sum used as outgroup detected in GenBank (Table 6, 7). Phylogenetic analysis were conducted in MEGA X (Kumar *et al.*, 2018). The evolutionary histories were inferred by using the Maximum Likelihood method and Tamura-Nei model (Tamura & Nei, 1993). The tree with the highest log likelihood (-6728.57, -3849.07 and -3890.27 for ITS-1, ITS-2 and COX-2 respectively) are shown (Fig. 21, 22, 23). Initial trees for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site (next to the branches). The *Contracaecum* larvae from all different fish hosts were clustered in the same clade of Contracaecum *rudolphii* B. Moreover, the phylogenetic tree of the ITS-1, ITS-2 and COX-2 sequences using ML analyses indicated that *Contracaecum* larvae clades were distinct species by high bootstrap values (Fig. 21, 22, 23).

Contracaecum larvae collected from the present study Parasite GeneBank No. of Host Source accession no. nucleotide (ITS) differences C. rudolphii A ITS1 (AJ634782) 9 Phalacrocorax carbo sinensis Li et al. (2005) 14 ITS2 (AJ634785) Phalacrocorax carbo sinensis Li et al. (2005) C. rudolphii B Li et al. (2005) ITS1 (AJ634783) 1 Phalacrocorax carbo sinensis ITS2 (AJ634786) 0 Phalacrocorax carbosinensis Li et al. (2005) C. rudolphii D ITS1 (FM210251) 6 Phalacrocorax varius Shamsi et al. (2009b) ITS2 (FM210268) 17 Phalacrocorax carbo sinensis Shamsi et al. (2009b) C. rudolphii E ITS1 (FM210257) 6 Phalacrocorax varius Shamsi et al. (2009b) ITS2 (FM210271) 15 Shamsi et al. (2009b) Phalacrocorax varius C. rudolphii F ITS (JF424597) 21 D'Amelio et al. (2012) Pelecanus occidentalis 16 Pelecanus occidentalis D'Amelio et al. (2012) ITS1 (AJ291468) 10 Zhu et al. (2001) C. ogmorhini Arctocephalus pusillus doriferus ITS2 (AJ291471) Zhu et al. (2001) 15 Zalophus californianus C. eudyptulae ITS1 (AJ007461) 8 Zhu et al.(unpublished) ITS2 (FM177565) Shamsi et al. (2009a) 17 Eudyptula minor C. chubutensis ITS1 (HQ389546) 13 Phalacrocorax brasilianus Garbin et al. (2011) ITS2 (HQ389548) Garbin et al. (2011) 23 Phalacrocorax atriceps ITS1 (MK424804) 22 Hbaiel & Mohammad C. variegatum Bird (unpublished) ITS2 (FM177537) 14 Anhinga melanogaster Shamsi et al. (2009a) C. microcephalum ITS1 (FM177523) 50 Shamsi et al. (2009a) Phalacrocorax melanoleucos ITS2 (FM177527) 72 Phalacrocorax melanoleucos Shamsi et al. (2009a) C. septentrionale ITS1 (AJ634784) 24 Phalacrocorax carbo sinensis Li et al. (2005) ITS2 (AJ634787) 35 Li et al. (2005) Alca torda C. bioccai ITS (JF424598) 30 Pelecanus occidentalis D'Amelio et al. (2012) 40 Pelecanus occidentalis D'Amelio et al. (2012) ITS (AY603529) 35 C. radiatum Leptonechotes weddlli Kijewska et al. (2008) 65 Leptonechotes weddlli Kijewska et al. (2008) ITS (AB277825) 77 C. osculatum Arabesque greenling Umehara et al. (2008) 105 Umehara et al. (2008) Arabesque greenling ITS1 (AM940056) C. multipapillatum 146 Pelecanus conspicillatus Shamsi et al. (2008) ITS2 (AM940060) 132 Pelecanus conspicillatus Shamsi et al. (2008) C. pyripapillatum ITS1 (AM940062) 141 Pelecanus conspicillatus Shamsi et al. (2008) ITS2 (AM940066) 136 Pelecanus conspicillatus Shamsi et al. (2008) ITS1 (MN557376) Acanthobrama marmid Present study Contracaecum larva _ ITS2 (MN526259) -Acanthobrama marmid Present study ITS1 (MN557377) Arabibarbus grypus Present study Contracaecum larva _ Arabibarbus grypus ITS2 (MN563727) Present study -Contracaecum larva ITS1 (MN557378) Capoeta trutta Present study -

Table (6): *Contracaecum* nematodes and specimens/accession number (ITS) of taxa used to build phylogenetic trees and the nucleotide differences with the *Contracaecum* larvae collected from the present study

_

-

_

_

Capoeta trutta

Carasobarbus luteus

Carasobarbus luteus

Chondrostoma regium

Present study

Present study

Present study

Present study

ITS2 (MN563728)

ITS1 (MN557379)

ITS2 (MN563729)

ITS1 (MN557380)

Contracaecum larva

Contracaecum larva

	ITS2 (MN563730)	-	Chondrostoma regium	Present study
Contracaecum larva	ITS1 (MN557381)	-	Cyprinus carpio	Present study
	ITS2 (MN563731)	-	Cyprinus carpio	Present study
Contracaecum larva	ITS1 (MN557382)	-	Luciobarbus barbulus	Present study
	ITS2 (MN563732)	-	Luciobarbus barbulus	Present study
Contracaecum larva	ITS1 (MN557383)	-	Luciobarbus esocinus	Present study
	ITS2 (MN563733)	-	Luciobarbus esocinus	Present study
Contracaecum larva	ITS1 (MN557384)	-	Luciobarbus xanthopterus	Present study
	ITS2 (MN563734)	-	Luciobarbus xanthopterus	Present study
Contracaecum larva	ITS1 (MN557385)	-	Mastacembelus mastacembelus	Present study
	ITS2 (MN563735)	-	Mastacembelus mastacembelus	Present study
Ascaris suum	ITS1 (AB110023)	-	Pig	Ishiwata et al. (2004)
	ITS2 (FJ418786)	-	Pig	Wickramasinghe et al.
				(2009)

Table (7): *Contracaecum* nematodes and specimens/accession number (COX-2) of taxa used to build phylogenetic trees and the nucleotide differences with the *Contracaecum* larvae collected from the present study

Parasite	GeneBank accession no.	No. of nucleotide	Host	Source
	(COX-2)	differences		
C. rudolphii A	EF122201	34	Phalacrocorax carbo sinensis	Mattiucci et al. (2008)
C. rudolphii B	EF558894	1	Phalacrocorax carbo sinensis	Mattiucci et al. (2008)
C. rudolphii C	EF014283	272	Phalacrocorax auritus	D'Amelio et al. (2007)
C. rudolphii F	JF727879	40	Pelecanus occidentalis	D'Amelio et al. (2012)
C. ogmorhini	MN624184	32	Zalophus californianus	Mladineo et al. (under press)
C. chubutensis	HQ328504	46	Phalacrocorax atriceps	Garbin <i>et al.</i> (2011)
C. microcephalum	EF122208	71	Phalacrocorax pygmaeus	Mattiucci et al. (2008)
C. septentrionale	EF558898	60	Phalacrocorax carbo carbo	Mattiucci et al. (2008)
C. bioccai	EF558899	50	Pelecanus occidentalis	Mattiucci et al. (2008)
C. osculatum	KC412224	58	Chionodraco hamatus	Santoro <i>et al.</i> (2013)
C. multipapillatum	AF179910	72	-	Nadler & Hudspeth (2000)
C. micropapillatum	EU852350	70	Pelecanus onocrotalus	Mattiucci et al. (2010)
C. austral	GQ847539	55	Phalacrocorax brasilianus	Garbin <i>et al.</i> (2011)
C. pelagicum	EF122210	60	Spheniscus magellanicus	Mattiucci et al. (2008)
Contracaecum larva	MN589997	-	Acanthobrama marmid	Present study
Contracaecum larva	MN589998	-	Arabibarbus grypus	Present study
Contracaecum larva	MN589999	-	Capoeta trutta	Present study
Contracaecum larva	MN590000	-	Carasobarbus luteus	Present study
Contracaecum larva	MN590001	-	Chondrostoma regium	Present study
Contracaecum larva	MN590002	-	Cyprinus carpio	Present study
Contracaecum larva	MN590003	-	Luciobarbus barbulus	Present study
Contracaecum larva	MN590004	-	Luciobarbus esocinus	Present study
Contracaecum larva	MN590005	-	Luciobarbus xanthopterus	Present study
Contracaecum larva	MN590006	-	Mastacembelus mastacembelus	Present study
Ascaris suum	HQ704901	-	Swine	Liu et al. (2012)

Fig. (21): Phylogenetic relationships between *Contracaecum* larvae from the present study and other *Contracaecum* species as inferred by maximum likelihood obtained from ITS-1. *Ascaris suum* was used as outgroup.

Fig. (22): Phylogenetic relationships between *Contracaecum* larvae from the present study and other *Contracaecum* species as inferred by maximum likelihood obtained from ITS-2. *Ascaris suum* was used as outgroup.

Fig. (23): Phylogenetic relationships between *Contracaecum* larvae from the present study and other *Contracaecum* species as inferred by maximum likelihood obtained from COX-2. *Ascaris suum* was used as outgroup.

The first information on *Contracaecum* larvae from the Iraqi freshwater fishes was given by Herzog (1969) which recorded Contracaecum larvae in 10 fish species from different inland waters of Iraq. While, In Kurdistan Region, *Contracaecum* larvae were recorded from Dukan Lake in Sulaimani Province by Abdullah & Rasheed (2004b) in Arabibarbus grypus (reported as Barbus grypus), Carasobarbus luteus (reported as Barbus luteus), Chondrostoma regium, Cyprinion macrostomum, Cyprinus carpio, Luciobarbus barbulus, L. esocinus, L. kersin, L. subquincunciatus, L. xanthopterus, and Squalius lepidus. So far, a total of 21 fish host species are known for *Contracaecum* larvae in Kurdistan Region of Iraq (Mhaisen & Abdullah, 2017). In addition, molecular identification of Contracaecum larvae in fish species have also not been studied, and there is still no specific identification of the *Contracaecum* species in fresh and marine water fish species in Iraq, as well as morphological identification based just on optical microscopy has been used to identify larval stage of *Contracaecum* only for genus level in this country. Recently, 42 different fish species were known as hosts for Contracaecum larvae in Iraq from north to south including marine water fish (Mhaisen, 2019).

It is considered to mention that the adult *Contracaecum rudolphii* sensu lato was recorded previously for the first time in Iraq in the digestive tract of the great black cormorant *Phalacrocorax carbo* from Baghdad Province in Iraq (Al-Moussawi & Mohammad, 2011). Furthermore, four other species of adult *Contracaecum* were reported in piscivorous bird (final host) from Barsrah Province, Iraq namely: *Contracaecum microcephalum* was recorded from the purple heron *Ardea purpurea* (Al-Hadithi & Habish, 1977; Habish, 1977; Awad *et al.*, 1994), from the pygmy cormorant (*Phalocrocorax pygmeus*) and the little egret (*Egretta grazetta*) from Basrah Marshes (Awad *et al.*, 1994) and from *E. grazetta*, the bittern *Ardeola ralloides* and the little bittern *Ixobrychus minutus* from Al-Hammar Marsh (Ali, 2008). *C. micropapillatum* was isolated from the grey heron *Ardea cinerea* and *A. ralloides* from Al-Hammar Marsh (Ali, 2008). *C. multipapillatum* and *C. rudolphi* (reported as *C. spiculigerum*) were reported from the pygmy cormorant (*P. pygmeus*) from Basrah Marsh (Habish, 1977; Awad *et al.*, 1994). *C. ovale* was reported from *A. purpurea* from Abu Zijri Marsh (Abdullah, 1988; Al-Hadithi & Abdullah, 1991) and from the bittern (*A. ralloides*) (Ali, 2008). In addition, unidentified adult *Contracaecum* species were also recorded from *Phalocrocorax carbo* in Shatt Al-Arab River (Abed, 2005) and from ten bird species in Meshab Marsh (Al-Tameemi, 2013).

The present investigation provides the first molecular and ultrastructural approaches toward characterization of larval ansakid nematodes (Contracaecum) in Iraq. Based on morphology, ultra-structure and molecular characters, all larvae in the present study which collected from A. marmid, A. grypus, C. trutta, C. luteus, C. regium, C. carpio, L. barbulus, L. esocinus, L. xanthopterus, and M. mastacembelus are belonging Contracaecum rudolphii B. It was noted that the Contracaecum larvae can infect more fish type in Iraq (Mhaisen, 2019). This unspecificity characters to infect a variety of different organs and different fish species may lead to infect a variety of piscivorous birds and mammals in the region. Anisakidosis is a disease caused by the accidental ingestion of larval anisakid nematodes in raw fish. All fishes which infected with Contracaecum larvae in the present study are edible, particularly A. marmid (prevalence 35%) and L. xanthopterus (prevalence 19.35%) in Sulaimani Province. This may affect human health in this region, because this fish is

used by local people and other consumers as a food source, as well as it is one of the delicious fish by local consumers.

Conclusions

In the view of the results of the present study, the following conclusions are drawn:

- During this investigation 36 different fish species in 26 genera belonging to 10 families were recorded from different localities of Sulaimani Province. The most abundant species and wide spread species was *Cyprinion macrostomum* with prevalence 15.17% followed by *Capoeta trutta* 10.46%. While, *Leuciscus vorax* was scarce with the ratio 0.047%.
- 2. In the present study *Alburnoides velioglui* was recorded for the first time in Iraq. The molecular characterization of this fish deposed in the GenBank database under the accession number (MN893770).
- 3. During examination of fishes in Sulaimani Province, it appeared that there were 10 different fish species infected with the third larval stage (L3) of *Contracaecum*. Some fishes in Sulaimani Province showed a high degree of sensitivity towards the infection with *Contracaecum* larvae, for example, the prevalence of infection in *Acanthobrama marmid* and *Luciobarbus xanthopterus* reached 35% and 19.35% respectively. While, other species showed low degree for example the prevalence of infection in *Arabibarbus grypus* and *Capoeta trutta* reached 0.81% and 0.9% respectively.
- 4. The *Contracaecum* larvae cannot be exactly diagnose depending on morphology by using optical microscope even by ultra-structural study by using scanning electron microscopy. These larvae can be diagnose only by molecular study, and the *Contracaecum* larvae in Sulaimani Province are belonging to *Contracaecum rudolphii* type-B.
- 5. The differences in the measurements like intestinal caecum, esophageal caecum, rectum, and boring tooth due to a difference in the hosts, the molecular study showed that all belonging one species.
- 6. Contracaecum larvae can infect human by eating raw or undercooked fish.

Recommendations

- 1. Sulaimani Province and Kurdistan Region of Iraq are rich with water bodies and has a good fish biodiversity and not undergone much studies yet, so it is recommended to survey of its fish fauna by using a new and scientific fishing ways (electro shocking and snorkeling) in order to record new fish fauna and parasitic fauna of fishes in this country.
- 2. Confirmative diagnosis (molecular study) is necessary for some fish species which closely similar to each other.
- 3. Gravel mining, garbage dumping, oil dumping, wastewater pipeline to river, sewage pollution, introduction of exotic aquatic species, illegal and over fishing are the main threats to fish diversity in Kurdistan Region of Iraq. So, it is suggested avoiding gravel mining on the rivers, treat all waste before discarding, and prevent over and illegal fishing.
- 4. Identify and manage some geographical area, recognized and managed, through legal or other effective means, as a protected area to achieve longterm conservation of all fish species, particularly threatened species.
- 5. The molecular study has ability to accurate diagnose of parasites, so it is recommended to use this tool for confirmative diagnose of the previously diagnosed fish parasites particularly the larval stage of the parasites.
- 6. Determination of phylogenetic relationships among fish parasites in Iraq to understanding the relationships among them.
- 7. The *Contracaecum* larvae in Sulaimani Province are belonging *Contracaecum rudolphii* B. The study of complete life cycle of these larvae in the laboratory is necessary for examination of the morphology and ultrastructure of adult stage (male and female), also using additional genetic markers.
8. Due to the clinical importance of this parasite, it is necessary to study the impact of the ecological, biological and pathological aspects of these parasites and subsequently the mode of their control and treatment.

REFERENCES

- Abdu-Fraj, M. S. A., and Z. I. Ftohe, (2008) "Histological structure of the cyst wall of *Contracaecum* larva and the histopathology in the stomach of *Silurus glanis*", *Rafidain J. Sci*, 19(2): 59-71.
- Abdul Jabbar, R. W. J. Fong, K. X. Kok, A.L. Lopata, R.B Gasser, and I. Beveridge, (2013) "Molecular characterization of anisakid nematode larvae from 13 species of fish from Western Australia", *Int. J. Food Microbio.*, 161: 247–253.
- Abdullah, B. H. (1988) "A study on parasites of some aquatic birds in Basrah", *M. Sc. Thesis*, Coll. Educ. Univ. Basrah: 118 pp. (In Arabic).
- Abdullah, S. M. A. (1990) "Survey of the parasites of fishes of Dokan Lake", *M. Sc. Thesis*, Coll. Sci., Univ. Salahaddin: 115 pp. (In Arabic).
- Abdullah, S. M. A. (2000) "Isolation of some parasites in samples of fishes taken from Erbil's market", J. Duhok Univ., 3(1): 1-6.
- Abdullah, S. M. A. (2002) "Ecology, taxonomy and biology of some parasites of fishes from Lesser Zab and Greater Zab rivers in north of Iraq", *Ph. D. Dissertation, Coll. Educ. (Ibn Al-Haitham), Univ. Baghdad*: 153 pp. (In Arabic).
- Abdullah, S. M. A. (2004) "Comparison between the parasitic infections of fishes caught in two of each of small natural habitats and fish farms in Erbil city", *Zanco J. Pure Appl. Sci.*, 16(4): 43-50. (In Arabic).
- Abdullah, S. M. A. (2005) "Parasitic fauna of some freshwater fishes from Darbandikhan lake, north of Iraq", *J. Duhok Univ.* 8(1): 29-35.
- Abdllah, S. M. A. (2006) "The inhabitant fished in Dokan lake in north of Iraq and methods for developing their culturing", 2nd Int. Conf. Ecol.South Valley Univ., 28-30 Mar.2006: 68-78.
- Abdullah, S. M. A., and A.R. A.-M. Rasheed (2004a) "Parasitic fauna of some freshwater fishes from Dokan lake, north of Iraq. I: Ectoparasites", *Ibn Al-Haitham J. Pure Appl. Sci*, 17(1): 34-36.
- Abdullah, S. M. A., and A.-R. A.M. Rasheed (2004b) "Parasitic fauna of some freshwater fishes from Dokan lake, north of Iraq. II: Endoparasites", *Ibn Al-Haitham J. Pure Appl. Sci.*, 17(5): 1-12.
- Abdullah, S. M. A., and F. T. M. Mhaisen, (2006) "Effect of sex and length of *Cyprinus carpio* from Lesser Zab River in northern Iraq, and seasonal variations on the infection with some parasites", *Rafidain J. Sci.*, 17(9): 1-9.

- Abdullah, S. M. A., and F. T. Mhaisen, (2011) "Infection of fishes from Greater Zab and Lesser Zab rivers in north of Iraq with larvae of nematode *Contracaecum* spp.", *Kirkuk Univ. J.*, *Sci. Stud.*, 6(3): 694-701. (In Arabic).
- Abdullah, S. M. A., Z. I. R. Rahemo, and A. A. Shwani, (2007) "The inhabitant fishes in Darbandikhan lake in north of Iraq and methods for developing their culture", *Egypt. J. Aquat. Biol. Fish*, 11(3): 1-7.
- Abdullah, Y. S., and S. M. A. Abdullah, (2013a) "Protozoans Infections of some Fish Species from Darbandikhan Lake in Kurdistan Region, Iraq", *Kurd. Acad. J., -A-, Special Issue:* 1st Int. Conf. Agric. Sci., 20-21 Nov. 2013. p. 85-91.
- Abdullah, Y. S., and S. M. A. Abdullah, (2013b) "Monogenean Infections on Fishes from Darbandikhan Lake in Kurdistan Region, Iraq", *Basrah J. Agric. Sci.*, 26 (Special Issue 1): 117-131.
- Abdullah, Y. S., and S. M. A. Abdullah, (2015a) "The parasitic infections of some freshwater fishes from Darbandikhan lake, Kurdistan region, Iraq", *Garmyan Univ. J.*, 2nd Sci. Conf., May 6th-7th, 2(Special issue): 874-884.
- Abdullah, Y. S., and S. M. A. Abdullah, (2015b) "Observasions on fishes and their parasites of Darbandikhan lake, Kurdistan region in north Iraq", *Am. J. Bio. Life Sci.*, 3(5): 176-180.
- Abdullah, Y. S., and S. M. A. Abdullah, (2016) "Recording three species of *Paradiplozoon* (Monogenea) from cyprinid fishes in some watersheds in Sharbazher area, Sulaimani city, north of Iraq", *J. Duhok Univ.*, 2nd Sci. Agric. Vet. Sci. Conf., Apr. 26th-27th 2016, 19(special issue 1): 19-25.
- Abdullah, Y. S., and S. M. A. Abdullah, (2018) " Ichthyofauna of Darbandikhan lake in Kurdistan Region, Iraq", *Zanco J. Pure Appl. Sci.*, 30(6): 130-134.
- Abed, J. M. (2005) "Biological and ecological survey of some enemies of fishes in three fish farms in Iraq", *Ph. D. Dissertation*, Coll. Agric. Univ. Basrah: 111 pp. (In Arabic).
- Abubakr, A. M.-A. (2015) "Studies on nematodes of two cyprinid fishes from Greater Zab River, near Aski-Kalak, Kurdistan Region with special reference to the effect of sex, length and season on infection rate", *M. Sc. Thesis*, Coll. Educ., Univ. Salahaddin: 82 pp.
- Agha, G. F. (2017) "Morphological and Molecular Identification of Some Inhabitant Fishes in Greater Zab River/ Aski-Kalak in Kurdistan Region, Iraq". *M. Sc. Thesis*, Coll. Agric., Univ. Salahaddin: 82 pp.
- Akhtar, Y. (2008) "Feeding habits and nematode parasites of some fishes of Karachi coast", *Ph. D. Dissertation.* Jinnah Univ. for Women.

- Al-Alusi, M. A. (2011) "Survey of some parasitic worms on three fish species from Euphrates River at Al-Haklania District, Al-Anbar Province", *Ibn Al-Haitham J. Pure Appl. Sci.*, 24(1): 69-75.
- Al-Awadi, H. M. H., and F. T. Mhaisen, (2010) "Parasitic fauna of fishes in Bahr Al-Najaf depression, mid Iraq", *Bull. Iraq Nat. Hist. Mus.*, 11(1): 1-9.
- Al-Awadi, H. M. H., F. T. Mhaisen, and F. F. Al-Joborae, (2010) "Helminth parasitic fauna of aquatic birds in Bahr Al-Najaf depression, mid Iraq", *Bull. Iraq Nat. Hist. Mus.*, 11(2):7-15.
- Alcântara, N. M., and M. Tavares-Dias, (2015) "Structure of the parasites communities in two Erythrinidae fish from Amazon river system (Brazil)", *Braz. J. Vet. Parasitol. Jaboticabal*, 24 (2): 183-190.
- Al-Hadithi, I. A. W., and A. H. Habish, (1977) "Observations on nematode parasite (*Contracaecum* sp.) in some Iraqi fishes", *Bull. Basrah Nat. Hist. Mus.*, 4: 17-25.
- Al-Hadithi, I. A. W., and B. H. Abdullah, (1991) "Some helminth parasites from three species of aquatic birds in Basrah, Iraq", *Basrah J. Agric. Sci.*, 4: 261-271. (In Arabic).
- Ali, A. H. (2008) "Taxonomy of helminth parasites in some marine and freshwater fishes and the relation of some of its with their final hosts in southern of Iraq", *Ph. D. Dissertation*, Coll. Agric., Univ. Basrah: 336 pp. (In Arabic).
- Ali, A. H., F. T. Mhaisen, and N. R. Khamees, (2014) "Checklists of nematodes of freshwater and marine fishes of Basrah Province, Iraq", *Mesopot. J. Mar. Sci.*, 29(2): 71 96.
- Ali, B.A.-R. (1989) "Studies on parasites of some freshwater fishes from Greater Zab- Iski-Kalak", *M. Sc. Thesis*, Coll. Sci., Univ. Salahadden: 120 pp. (In Arabic).
- Ali, N. M., F. T. Mhaisen, E. S. Abul-Eis, and L. S. Kadim, (1989) "Helminth parasites of the mugilid fish *Liza abu* (Heckel) inhabiting Babylon fish farm, Hilla, Iraq", *Proc.* 5th Sci. Conf./ SRC-Iraq Baghdad, 5(2): 225-233.
- Ali, N. M., N. E. Salih, and K. N. Abdul-Ameer, (1987) "Parasitic fauna of some freshwater fishes from Tigris river, Baghdad, Iraq", IV: Nematoda", *J. Biol. Sci. Res.* 18(3): 35-45.
- Al-Jadoa, N. A. (2008) "Study of parasitic infection in Liza abu in drainage water in Diwanyia Province", *J. Babylon Univ. Pure Appl. Sci.*, 15(1): 256-263.
- Al-Kinanny, N. A. H., and Z. A. H. Al-Obaidy, (2017) "Seasonal changes and their impact on the incidence internal parasites of fish *Liza abu* in The-Qar Governorate", *Al-Qadisiyah J. Pure Appl. Sci.*, 22(1): 41-47. (In Arabic).

- Al-Mayali, H. M., and A. M. Y. Al-Mahi, (2016) "Identification of some intestinal helminthes in Barbus grypus, Liza abu and study of histopathological changes result from infection", Al-Qadisiyah J. Pure Appl. Sci., 21(1): 96-115.
- Al-Moussawi, A. A., A. M. Hadi, and Z. A. Macawi, (2018) "Diagnosis of Some Parasites of Asian Catfish *Silurus Triostegus* (Heckel, 1843)", *Adv. Biores.*, 9(3): 86-90.
- Al-Moussawi, A. A., and M. K. Mohammad, (2011) "Contracaecum rudolphii Hartwich, 1964 (Nematoda: Anisakidae) in the Cormorant Phalacrocorax carbo (Linnaeus, 1758) wintering in Baghdad area: A new host record in Iraq", Bull. Iraq Nat. Hist. Mus., 11(3): 7-16.
- Al-Nasiri, F. S., F. T. Mhaisen, and S. K. Al-Nasiri, (2002) "Parasitic infection of the common carp, *Cyprinus carpio* in a man-made lake at Baghdad region", *Iraqi J. Agric.*, 7(1):175-181.
- Al-Niaeem, K. S., and S. A. A. Al-Azizz, (2002) "The influence of parasitisim in *Barbus* sharpeyi on protein and lipid content", *Bas. J. Vet. Res.*, 1(1): 27-32.
- Al-Rawi, A., Al-Cbaidi, S., and S. Jawdat, (1978) "A list of fishes collected from the little Zab river in Iraq", *Bull. Biol. Res. Cent.*, 10: 3-11.
- Al-Saadi, A.A. J. J., F. T. Mhaisen, and H. R. Hasan, (2010) "Endoparasites of seven fish species from Al-Husainia Creek, Karbala Province, mid Iraq", *Basrah J. Agric. Sci.*, 23 (special issue 2): 139-146.
- Al-Saudi, A. F. (1976) Little Zab region in Iraq, Asad Press. Baghdad. 384 pp.
- Al-Tameemi, I. A. A. (2013) "Helminthes parasitized of some aquatic birds and the importance of insects in the life cycle of some of them in Basrah province", *M. Sc. Thesis*, Coll. Educ. Univ. Basrah: 222 pp. (In Arabic).
- Al-Zubaidy A. B. (2009) "Prevalence and densities of *Contracaecum* sp. larvae in *Liza abu* (Heckel, 1843) from different Iraqi water bodies", *J. King Abdulaziz Univ. Mar. Sci.*, 20: 3-17.
- Amlacher, E. (1970) Textbook of fish diseases, (Engl.Transl.). T.F.H. Publ., Jersey City: 302 pp.
- Anderson, R.C. (1988) "Nematode transmission patterns", J. Parasitol., 74: 30-45.
- Anderson, R.C. (2000) Nematode parasites of vertebrates. Their development and transmission, 2nd edn. CABI Publishing, Wallingford, UK. 650 pp.
- Arslan, A., A. Dinçoğlu, and A. Güven, (1995) "The zoonoses produced by the sea foods consumption in humans", *Kafkas Univ. Vet. Fak Derg.*, 1 (1-2): 103-107.

- Audicana, M.T., and M. W. Kennedy, (2008) "Anisakis simplex: from Obscure Infectious Worm to Inducer of Immune Hypersensitivity", Clin. Microbiol. Rev., 21: 360-379.
- Awad, A.H. H., and I. A. A. Al-Tameemi, (2013) "The role of local fishes as an intermediate or paratenic hosts for some parasites of aquatic birds in Basrah Province", *Basrah J. Agric. Sci.*, 26 (Special Issue 2): 205-210. (In Arabic).
- Awad, A.H. H., B. H. Abdullah, and S. H. Al-Mayah, (1994) "Some nematodes parasitized in seven species of aquatic birds in Basrah, Iraq", *Basrah J. Sci.*, 12(1): 63-70.
- Balasem, A. N., F. T. Mhaisen, S. M. J. Al-Shaikh, G. H. Al-Khateeb, K. R. Asmar, and T. K. Adday, (1993) "Survey of fish parasites from Tigris river at Al-Zaafaraniya, south of Baghdad, Iraq", *Mar. Mesop.*, 8(2): 226-235.
- Barbieri, R., J. Vukić, R. Šanda, Y. Kapakos, and S. Zogaris, (2017) "Alburnoides economoui, a new species of spirlin from Central Greece and redescription of Alburnoides thessalicus (Actinopterygii: Cyprinidae)", Biologia, 72(9): 1075-1088.
- Barson, M. (2004) "The occurrence of *Contracaecum* sp. larvae (Nematoda: Anisakidae) in the catfish (Burchell) from Lake Chivero, Zimbabwe", *Onderstepoort J. Vet. Res.*, 71: 35-39.
- Barson, M., and A. Avenant-Oldewage, (2006) "Nematode parasites of *Clarias gariepinus* (Burchell, 1822) from the Rietvlei Dam, South Africa", *Onderstepoort J. Vet. Res.*, 73: 87-94.
- Bashê, S. K. R. (2008) "The parasitic fauna of spiny eel Mastacembelus mastacembelus (Banks and Solander, 1794) from Greater Zab River-Kurdistan Region-Iraq", M. Sc. Thesis, Coll. Sci. Educ., Univ. Salahaddin: 62 pp.
- Beckman, W. C. (1962) The freshwater fishes of Syria and their general biology and management, FAO Fish. Biol. Branch Tech. Pap. No.8: 179 pp.
- Bergmann, G. T., and P. J. Motta, (2004) "Infection by Anisakid Nematodes Contracaecum spp. in the Mayan Cichlid Fish 'Cichlasoma (Nandopsis)' urophthalmus (Günther 1862)", J. Parasitol., 90(2): 405-407.
- Berland, B. (1991) Hysterothylacium aduncum (Nematoda) in fish. ICES Identification leaflets for diseases and parasites of fish and shellfish, Leaflet No. 44, 4 p.
- Bilal, S. J., S. K. Rahman, Y. S. Abdullah, and S. M. A. Abdullah, (2017) "First record of *Rhabdochona (Rhabdochona) longispicula* (Nematoda) in *Glyptothorax kurdistanicus* from Greater Zab River, Kurdistan Region/ Iraq", *Zanco J. Pure Appl. Sci.*, 29(1): 48-53.
- Bogutskaya, N. G., and B. W. Coad, (2009) "A review of vertebral and fin-ray counts in the genus *Alburnoides* (Teleostei: Cyprinidae) with a description of six new species", *Zoosyst. Rossica.*, 18 (1): 126-173.

- Bykhovskaya-Pavlovskaya, I. E., A. V. Gusev, M. N. Dubinia, N. A. Izyumova, T. S. Smirnova, I. L. Sokolovskaya, G. A. Shtein, S. S. Shul'man, and V. M. Epshtein, (1962) Key to parasites of freshwater fish of the U. S. S. R, Akad. Nauk, S. S. S. R., Moscow, (In Russian).
- Ciepielewski, W., A. Martyniak, and J. A. Szczerbowski, (2001) "Ichthyofauna in the Dokan and Derbendikhan reservoirs", *Arch. Pol. Fish.*, 9(1): 157-170.
- Coad, B. W. (2010) Freshwater fishes of Iraq, Pensoft Publisher, Sofia-Moscow.
- D'Amelio, S., G. Nascetti, S. Mattiucci, R. Cianchi, P. Orecchia, L. Paggi, B. Berland, and L. Bullini, (1990) "Ricerche electroforetiche su alcune specie del genere *Contracaecum*, parassiti di uccelli ittiofagi (Ascaridida: Anisakidae) ", *Parassitologia*, 32(Supplement 1):77
- D'Amelio, S., N. B. Barros, S. Ingrosso, D. A. Fauquier, R. Russo, and L. Paggi, (2007) "Genetic characterization of members of the genus *Contracaecum* (Nematoda: Anisakidae) from fish-eating birds from west central Florida, U.S.A., with evidence of new species", *Parasitology*, 134: 1041-1051.
- D'Amelio, S., S. Cavallero, N. O. Dronen, N. B. Barros, and L. Paggi, (2012) "Two new species of *Contracaecum Railliet* & Henry, 1912 (Nematoda: Anisakidae), *C. fagerholmi* n. sp. and *C. rudolphii* F from the brown pelican *Pelecanus occidentalis* in the northern Gulf of Mexico", *Syst Parasitol.*, 81: 1-16.
- Eassa, A. M., A. M. Al-Jenaei, Z. A. Abdul-Nabi, M. A. Abood, R. S. Kzaal, and Y. J. Aliwy, (2014) "Comparative ecological study of pathogen structure between wild and cultured common carp *Cyprinus carpio* L. in Basrah", *Marsh Bull.*, 9(2): 107-123.
- Erkan, N., and G. Bilen, (2010) "Effect of essential oils treatment on the frozen storage stability of chub mackerel fillet", *J. Verbr. Lebensm.*, 5(1): 101-110.
- Esmaeili, H. R., G. Sayyadzadeh, S. Eagderi, and K. Abbasi, (2018) "Checklist of freshwater fishes of Iran", *FishTaxa*, 3(3): 1-95.
- Freyhof, J., and M. Geiger, (2017) "Oxynoemacheilus zarzianus, a new loach from the Lesser Zab River drainage in Iraqi Kurdistan (Teleostei: Nemacheilidae)", Zootaxa, 4273(2): 258-270.
- Freyhof, J., and Y. S. Abdullah, (2017) "Two new species of *Oxynoemacheilus* from the Tigris drainage in Iraqi Kurdistan (Teleostei: Nemacheilidae)", *Zootaxa*, 4238(1): 073-087.
- Freyhof, J., H. R. Esmaeili, G. Sayyadzadeh, and M. Geiger, (2014) "Review of the crested loaches of the genus *Paracobitis* from Iran and Iraq with the description of four new species (Teleostei: Nemacheilidae)", *Ichthyol. Explor. Freshw.*, 25(1): 11-38.

- Freyhof, J., Y. S. Abdullah, K. Ararat, I. Hamad, and M. F. Geiger, (2016) "Eidinemacheilus proudlovei, a new subterranean loach from Iraqi Kurdistan (Teleostei; Nemacheilidae)", Zootaxa, 4173(3): 225-236.
- Froese, R., and D. Pauly, (2020) "FishBase. World web electronic publication", www.fishbase.org,version (3/6/2020).
- Garbin, L. E., S. Mattiucci, M. Paoletti, J. I. Diaz, G. Nascetti, and G. T. Navone, (2013) "Molecular identification and larval morphological description of *Contracaecum pelagicum* (Nematoda: Anisakidae) from the anchovy *Engraulis anchoita* (Engraulidae) and fish-eating birds from the Argentine North Patagonian Sea", *Parasitol. Int.*, 62: 309-319.
- Geiger, M. F., F. Herder, M. T. Monaghan, V. Almada, R. Barbieri, M. Bariche, P. Berrebi, J. Bohlen, M. Casal-Lopez, G. B. Delmastro, G. P. J. Denys, A. Dettai, I. Doadrio, E. Kalogianni, H. Karst, M. Kottelat, M. Kovači'c, M. Laporte, M. Lorenzoni, M. Marči'c, M. Özulu'g, A. Perdices, S. Perea, H. Persat, S. Porcelotti, C. Puzzi, J. Robalo, R. Šanda, M. Schneider, V. Šlechtova, M. Stoumboudi, S. Walter, and J. Freyhof, (2014) "Spatial heterogeneity in the Mediterranean Biodiversity Hotspot affects barcoding accuracy of its freshwater fishes", *Mol. Ecol. Resour.*, 14 (6): 1210-1221.
- Gerald, D. S., and L. S. Roberts, (2009) *Foundations of parasitology*, 8th edn. Publ. McGraw-Hill, 701 pp.
- Gholami Z., M. T. Rahimi, E. B. Kia, H. R. Esmaeili, and I. Mobedi, (2014) "Capoeta damascina (Valenciennes, 1842), a new host of Contracaecum sp. and Capillaria sp. (Nematoda) from the Kor River Basin, southwestern Iran", Asian Pac. J. Trop. Biomed., 4(Suppl. 1): S139-S142.
- Habish, A. H. (1977) "Ecological and biological studies on the larval nematode, *Contracaecum* sp. a parasite of the fishes in Basrah, Iraq", *M.Sc.* Thesis, University of Basrah, 98pp.
- Herzog, P.H. (1969) "Untersuchungen über die parasiten der süßwasserfische des Irak", Arch. *Fischereiwiss.*, 20(2/3): 132-147.
- Hoffman, G. L. (1998) *Parasites of North American freshwater fishes*, 2nd edn. Cornell Univ. Press, London.
- Hoole, D., D. Bucke, P. Burgess, and I. Wellby, (2001) *Diseases of Carp and Other Cyprinid Fishes*, Printed and bound in Great Britain by MPG Books Ltd, Bodmin, Cornwall, 264 PP.
- Ishikura, H., S. Takahashi, N. Sato, A. Matsuura, H. Nitto, M. Tsunokawa, and K. Kikuchi, (1996) "Epidemiology of anisakidiosis and related human diseases and studies on parasites infecting marine mammals, fishes and squids", *Bull. Mar. Biomed. Inst. Sapporo Med. Univ.*, 3: 23-37.

- Jacobas, D. E., X. Q. Zhu, R. B. Gasser, and N. B. Chilton, (1997) "PCR-based methods for identification of potentially zoonotic ascaridoid parasites of the dog, fox and cat", Acta. *Trop.*, 68: 191-200.
- Jawad, L. A. (2012) "History of the study of the fish fauna of Iraq", *Water Res. Manag.*, 2(3): 11-20.
- Jouladeh-Roudbar, A., S. Eagderi, and H.R. Esmaeili, (2016) "First record of the striped bystranka, *Alburnoides taeniatus* (Kessler, 1874) from the Hari River basin, Iran (Teleostei: Cyprinidae)", *J. Entomol. Zool. Stud.*, 4(5): 788-791.
- Kaya, C. (2020) "Spirlins of the southern Black Sea basin, with the description of a new species (Teleostei: Leuciscidae)", *Zootaxa*, (in press)
- Kaya, C., T. Davut, and Ü. Erhan, (2016) "The Latest status and distribution of fishes in upper Tigris River and two new records for Turkish freshwaters", *Turk. J. Fish. Aquat. Sci.*, 16: 545-562.
- Khalifa, A. K., F. K. Hassan, H. H. Atiah, and B. M.A. Latif, (1987) "Parasitic infestation of fishes in Iraq waters", *Iraq. J. Biol. Sc.*, 6(1): 58-63.
- Khalifa, K. A. (1989) "Incidence of parasitic infection of fishes in Iraq", *Pakistan Vet. J.*, 9(2): 66-69.
- Køie, M. (2001) "Experimental infections of copepods and sticklebacks Gasterosteus aculeatus with small ensheathed and large third-stage larvae of *Anisakis simplex* (Nematoda, Ascaridoidea, Anisakidae)", *Parasitol. Res.*, 87: 32-36.
- Kottelat, M., and J. Freyhof, (2007) *Handbook of European freshwater fishes*, Berlin, xiv + 646 pp.
- Kumar S., G. Stecher, M. Li, C. Knyaz and K. Tamura, (2018) "MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms", *Mol. Biol. Evol.*, 35: 1547-1549.
- Levin, B. A., E. Simonov, M. P. Matveyev, O. N. Artaev, N. J. Mustafayev, A. N. Pashkov, and H. R. Roubenyan, (2018). "DNA barcoding of the fishes of the genus Alburnoides (Actinopterygii, Cyprinidae) from Caucasus", *Mitochondrial DNA Part A*, 29(1): 49-55.
- Li, A. X., S. D'Amelio, L. Paggi, F. He, R. B. Gasser, Z. R. Lun, E. Abollo, M. Turchetto, and X.Q. Zhu. (2005) "Genetic evidence for the existence of sibling species within Contracaecum rudolphii (Hartwich, 1964) and the validity of Contracaecum septentrionale (Kreis, 1955) (Nematoda: Anisakidae) ", *Parasitol Res.*, 96: 361-366.
- Lile, N. K. (1998) "Alimentary tract helminths of four pleuronectid flatfish in relation to host phylogeny and ecology", *J. Fish Biol.*, 53: 945-953.

- Lima, F., A. Pozza, and P. Lehmann (2019) "Contracaecum spp. (Nematode: Anisakidae) and Eustrongylides spp. (Nematoda: Dioctophymatidae) nematode larvae with zoonotic potential found in two fish species from Tramandaí River basin, southern Brazil", Bol. Inst. Pesca., 45(3): 495-503.
- Margolis, L., G. W. Esch, J. C. Holmes, A. M. Kuris, and G. A. Schad, (1982) "The use of ecological terms in parasitology (Report of an adhoc committee of the American Society of Parasitologists) ", J. Parasitol. 68(1): 131-133.
- Mattiucci, S., and G. Nascetti, (2008) "Advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host-parasite co-evolutionary processes", *Adv. Parasitol.*, 66: 47-148.
- Mattiucci, S., M. Paoletti, A. C. Solorzano, G. Nascetti, (2010) "Contracaecum gibsoni n. sp. and C. overstreeti n. sp. (Nematoda: Anisakidae) from the Dalmatian pelican Pelecanus crispus (L.) in Greek waters: genetic and morphological evidence", Syst. Parasitol., 75: 207-224.
- Mattiucci, S., M. Paoletti, J. Olivero-Verbel, R. Baldiris, B. Arroyo-Salgado, L. Garbin, G. Navone, and G. Nascetti, (2008b) "Contracaecum bioccai n. sp. from the brown pelican Pelecanus occidentalis (L.) in Colombia (Nematoda: Anisakidae): morphology, molecular evidence and its genetic relationship with congeners from fish-eating birds", Syst. Parasitol., 69(2):101-121.
- Mattiucci, S., P. Cipriani, M. Paoletti, V. Nardi, M. Santoro, B. Bellisario, and G. Nascetti, (2015) "Temporal stability of parasite distribution and genetic variability values of Contracaecum osculatum sp. D and C. osculatum sp. E (Nematoda: Anisakidae) from fish of the Ross Sea (Antarctica)", *Int. J. Parasitol.*: Parasites and Wildlife 4: 356-367.
- Mattiucci, S., V. Farina, N. Campbell, K. MacKenzie, P. Ramos, A. L. Pinto, P. Abaunza, and G. Nascetti, (2008a) "Anisakis spp. Larvae (Nematoda: Anisakidae) from Atlantic horse mackerel: Their genetic identification and use as biological tags for host stock characterization", Fish. Res. 89: 146-151.
- Mhaisen, F. T., (1986) "Records of some fish parasites from Shatt Al-Arab River and the north west of the Arab Gulf", *Bull. Basrah. Nat. Hal Mus.*, 6: 111-124.
- Mhaisen, F. T. (2019) "Checklists of Parasites of Fishes of Thi-Qar Province, Iraq", *Biol. Appl. Environ. Res.*, 3(2): 152-167.
- Mhaisen, F. T., A. A. Al-Saadi, and A. A. Al-Shamma'a, (1999) "Some observations on fish parasites of Habbaniya lake", *Ibn Al-Haitham J. Pure Appl. Sci.*, 12(1): 62-67.
- Mhaisen, F. T., A. H. Ali, and N. R. Khamees, (2017) "Checklists of fish parasites of Basrah Marshlands, Iraq", *Biol. Appl. Environ. Res.*, 1(2): 237-278.

- Mhaisen, F. T., and F. S. Al-Nasiri, (2012) "Literature Review on the Parasites of Fishes of Salah Al-Deen Province, Iraq", *J. Tikreet Univ. Agric. Sci.*, 12(2): 209-219.
- Mhaisen, F. T. and S. M. A. Abdullah, (2017) "Parasites of Fishes of Kurdistan Region, Iraq: Checklists", *Biol. Appl. Environ. Res.*, 1(2): 131-218.
- Mhaisen, F. T., and A.R. L. Rubaie, (2018) "Checklists of fish parasites of Babylon Province of Iraq, exclusive of farm fishes", *Biol. Appl. Environ. Res.*, 2(1): 57-110.
- Mhaisen, F. T., A.R. L. Al-Rubaie, and B. A.H. Al-Sa'adi, (2015). "Nematodes and Acanthocephalans of Fishes from the Euphrates River at Al-Musaib City, Mid Iraq", *Am. J. Biol. Life Sci.*, 3(4): 108-115.
- Mhaisen, F. T., G. H. Al-Khateeb, A. N. Balasem, and A. J. Mutar, (1997) "On a collection of some fish parasites from Euphrates river, Anbar province, Iraq", *Babylon Univ. J., Pure Appl. Sci.*, 2(3): 267-272.
- Mhaisen, F. T., H. M. H. Al-Mayali, and H. R. J. Al-Abodi, (2019) "Checklists of parasites of fishea of Al-Diwaniyah Province, Iraq", *Bull. Iraq nat. Hist. Mus.* 15(3): 293-318.
- Mhaisen, F. T., K. N. Abdul-Ameer, and Z. K. Hamdan, (2018) "Checklists of parasites of fishes of Salah Al-Din Province, Iraq", *Biol. Appl. Environ. Res.*, 2(2): 180-218.
- Mhaisen, F. T., K. S. Al-Niaeem, and A. B. Al-Zubaidy, (2012) "Literature review on fish parasites of Al-Furat fish farm, Babylon Province, Iraq", *Iraqi J. Aquacult.*, 9(1): 95-122.
- Mhaisen, F. T., N. K. Al-Salim, and N. R. Khamees, (1986) "The parasitic fauna of two cyprinid and a mugilid fish from Mihaijeran Greek, Basrah", J. Bio. Sci. Res., 17(3): 63-73.
- Mhaisen, F. T.; N. R. Khamees, and S. A. M. Al-Daraji, (1993) "Parasites and disease agents of marine and freshwater fishes of Basrah Province, Iraq", *Mar. Mesop.*, 8(1): 45-61.
- Mohammad, M. K. (2016) "The parasitic fauna of the exotic fish *Tilapia zillii* in the middle and south of Iraq", *Int. J. Curr. Microbiol. App. Sci.*, 5(3): 93-96.
- Mohanty, B. P., S. Ganguly, A. Mahanty, T. Mitra, S. Patra1, D. Karunakaran, S. Mathew, K. Chakraborty, B. N. Paul, D. Sarma, S. Daya, S. Singh, and S. Ayyappan, (2019) "Chapter 11: Fish in human health and nutrition", *Advances in Fish Research*, edited by Mohanty B. P., (7): 189-218.
- Molnár, K., C. Székely, F. Baska, T. Müller, S. Zuo, P. W. Kania, B. Nowak, and K. Buchmann, (2019) "Differential survival of 3rd stage larvae of *Contracaecum rudolphii* type B infecting common bream (*Abramis brama*) and common carp (*Cyprinus carpio*)", *Parasitol. Res.*, 1-7.

Moravec, F. (1994) "Parasitic nematode of freshwater fishes of Europe", Acad. Praha., 473 pp.

- Moravec, F. (2007) "Nematode parasites of fishes: Recent advances and problems of their research", *Parassitologia*, 49: 155-160.
- Moravec, F. (2009) "Experimental studies on the development of *Contracaecum rudolphii* (Nematoda: Anisakidae) in copepod and fish paratenic hosts", *Folia Parasitol.*, 56(3): 185-193.
- Moravec, F., and T. Yooyen, (2011) "Two new species of *Rhabdochona* (Nematoda: Rhabdochonidae) from freshwater fishes in Thailand", *Folia Parasitol.*, 58(3): 224-232.
- Moravec, F., A. Saraiva, S. M. A. Abdullah, S. J. Bilal, and Z. I. F. Rahemo, (2009) "Two species of *Rhabdochona* Railliet, 1916 (Nematoda: Rhabdochonidae) parasitising cyprinid fishes in Iraq, with a redescription of *R. tigridis* Rahemo, 1978 (emend.)", *Syst. Parasitol.*, 74: 125-135.
- Nadler, S. A., and D. S. Hudspeth, (2000) "Phylogeny of the Ascaridoidea (Nematoda: Ascaridida) based on three genes and morphology: hypotheses of structural and sequence evolution", *J. Parasitol.*, 86: 380–393.
- Nagasawa, K. (2012) "The biology of *Contracaecum osculatum* sensu lato and *C. osculatum* A (Nematoda: Anisakidae) in Japanese waters: a review", *Biosphere Sci.*, 51: 61-69.
- Nasraddin M. O. (2013) "Some ecological aspects of monogenean infections on some fishes from Lesser Zab River, near Koysinjaq City, Kurdistan Region, Iraq", MSc. Thesis, Coll. Sci., Univ. Salahaddin: 108 pp.
- Nawab Al-Deen, F.M. (1994) "Studies on the nematode parasites in many species of freshwater fishes in Iraq", *M. Sc. Thesis*, Coll. Sci., Univ. Mosul: 116 pp. (In Arabic).
- Norris, D. E., and R. M. Overstreet, (1976) "The public health implication of larval *Thynnascaris* nematodes from shellfish", *J. Milk Food Tech.*, 39: 47-54.
- Oshima, T. (1987) "Anisakiasis-Is the Sushi Bar Guilty", Parsitol. Today, 3: 44-48.
- Pal, J., B. N. Shukla, A. K. Maurya, H. O. Verma, G. Pandey, and Amitha, (2018) "A review on role of fish in human nutrition with special emphasis to essential fatty acid", *Int. J. Fish. Aquat. Stud.*, 6(2): 427-430.
- Pekmezci, G. Z., and B. Yardimci, (2019) "On the occurrence and molecular identification of *Contracaecum* larvae (Nematoda: Anisakidae) in *Mugil cephalus* from Turkish waters", Parasitolo. Res., 1-10.
- Pinheiro, R. H. S., A. P. Furtado, J. N. dos Santos, and E. G. Giese, (2019) "*Contracaecum* larvae: morphological and morphometric retrospective analysis, biogeography and zoonotic risk in the amazon", *Braz. J. Vet. Parasitol.*, 28(1):12-32.

- Rahemo, Z. I. F., and B. H. Al-Niaeemi, (2001) "Parasites of Europian catfish (*Silurus glanis*) from Tigris River in Mosul city", *Al-Qadisiyah J. Pure Appl. Sci.*, 6(2): 116-125 (in Arabic).
- Rahemo, Z. I. F., and F. A. M. Al-Abbadi, (1994) "Parasites of Liza abu (Heckel) from Al-Gharaf River in Thi-Qar Provinece, Iraq", *J. Educ. Sci.*, 18: 48-59. (in Arabic).
- Rahemo, Z. I. F., and F. Nawab Al-Din, (2009) "Morphological observation at SEM on three species of nematodes from Iraqi fishes", J. Kirkuk Univ. Sci. Stud., 1st Sci. Conf. Pure Sci., (Proceeding part 3. Biology): 13-21.
- Rahemo, Z. I. F., B. A. Hamdi, and F. M. Aziz, (2005) "Histological changes in the liver of the freshwater fish, *Leuciscus cephalus* caught from Serchinar stream, infected with *Contracaecum* larvae", *Riv. Parassitol.*, 22(66), No. 3: 185-190.
- Rasheed, R. O., (2011) "Seasonal variation in fat percentage and water content of muscle tissue of some fishes endemic to Derbendikhan reservoir", *J. Babylon Univ. for Pure and Appl. Sci.*, 19(2): 435-443.
- Ribeiro, J. S., F. C. Rodrigues de Oliveira, and N. B. Ederli, (2017) "First report of nematodes parasitizing *Clarias gariepinus* (Pisces, Siluriformes) in the Americas", *Pan-Am. J. Aquat. Sci.*, 12(4): 343-349.
- Roudbar, A. J., S. Eagderi, H. R. Esmaeili, B. W. Coad, and N. Bogutskaya, (2016) "A molecular approach to the genus *Alburnoides* using COI sequences data set and the description of a new species, *A. damghani*, from the Damghan River system (the Dasht-e Kavir Basin, Iran) (Actinopterygii, Cyprinidae)", *Zookeys*, 579: 157-181.
- Ruppert, E. E., R. S. Fox, and R. D. Barnes, (2004) *Invertebrate Zoology*, 7th edn. Thomson Brooks/Cole, United States. 963 pp.
- Schmidt, G. D., and L. S. Roberts (2009) *Foundations of parasitology*/ Larry S. Roberts, John Janovy, Jr., 8th edn., McGraw-Hill Publ., New York: 701 pp.
- Shammi, Q. J., and S. Bhatnagar, (2006) *Applied fisheries*, Printed at Babloo offset, Jodhpur in India, 328 pp.
- Shamsi, S., and A. R. Butcher, (2011) "First report of human anisakidosis in australia", *Med. J. Aust.*, 194(4): 199-200.
- Shamsi, S., and J. Suthar, (2016) "A revised method of examining fish for infection with zoonotic nematode larvae", *Int. J. Food. Microbiol.*, 227: 13–16
- Shamsi, S., and M. Aghazadeh-Meshgi, (2011) "Morphological and genetic characterisation of selected *Contracaecum* (Nematoda: Anisakidae) larvae in Iran", *Iran. J. Fish. Sci.*, 10(2): 356-361.

- Shamsi, S., A. Stoddart, L. Smales, and S. Wassens, (2018). Occurrence of *Contracaecum* bancrofti larvae in fish in the Murray–Darling Basin. J. Helminthol., 93(5): 574-579.
- Shamsi, S., A. Turner, and S. Wassens, (2017) "Description and genetic characterization of a new *Contracaecum* larval type (Nematoda: Anisakidae) from Australia", *J. Helmintholo.*, 1-7.
- Shamsi, S., R. B. Gasser, and I. Beveridge, (2011) "Mutation scanning coupled sequencing of nuclear ribosomal DNA spacers as a tool for the specific identification of different *contracaecum* (nematoda: Anisakidae) larval types", *Mol. Cell. Probes*, 25(1): 13-18.
- Shamsi, S., R. Gasser, I. Beveridge, and A. A. Shabani, (2008) "Contracaecum pyripapillatum n. sp. and a description of C. multipapillatum (von Drasche, 1882) from the Australian pelican, Pelecanus conspicillatus", Parasitol. Res., 103: 1031-1039.
- Shamsi, S., R. Norman, R. Gasser, and I. Beveridge, (2009) "Genetic and morphological evidences for the existence of sibling species within *Contracaecum rudolphii* (Hartwich, 1964) (Nematoda: Anisakidae) in Australia", *Parasitol. Res.*, 105:529-538.
- Shamsuddin, M., I. A. Nader, and M.J. Al-Azzawi, (1971) "Parasites of common fishes from Iraq with special reference to larval form of *Contracaecum* (Nematoda: Heterocheilidae)", *Bull. Biol. Res. Centre. Baghdad*, 5: 66-78.
- Shwani, A. A. (2009) "The parasitic fauna of Asian catfish *Silurus triostegus* (Heckel, 1843) from Greater Zab River- Kurdistan Region- Iraq", *M. Sc. Thesis*, Coll. Sci. Educ., Univ. Salahaddin: 75 pp.
- Shwani, A. A., and S. M. A. Abdullah, (2010) "Endoparasites of the asian catfish *Silurus triostegus* (Heckel, 1843) from Greater Zab river-Kurdistan region-Iraq", *J. Duhok Univ.* 13(1): 172-179.
- Sorour, Sh. S., and A. H. Hamouda, (2019) "Prevalence of nematodes infestation in *Clarias gariepinus* from El-Burullus Lake and Lake Nasser, Egypt", *Iraqi J. Vet. Sci.*, 33(2): 181-188.
- Stierandova, S., J. Vuki'c, E. D. Vasil'eva, S. Zogaris, S. Shumka, K. Halačka, L. Vetešnik, M. Švatora, M. Nowak, T. Stefanov, J. Koščo, and J. Mendel, (2016) "A multilocus assessment of nuclear and mitochondrial sequence data elucidates phylogenetic relationships among European spirlins (Alburnoides, Cyprinidae)", *Mol. Phylogen. Evol.*, 94: 479-491.
- Szostakowska, B., and H.-P. Fagerholm, (2007) "Molecular Identification of Two Strains of Third-Stage Larvae of *Contracaecum rudolphii* Sensu Lato (Nematoda: Anisakidae) From Fish in Poland", *J. Parasitol.*, 93(4): 961-964.

- Szostakowska, B., P. Myjak, M. Wyszyński, H. Pietkiewicz, and J. Rokicki, (2005) "Prevalence of Anisakin nematodes in fish from southern Baltic Sea", *Pol. J. Microbiol.*, 54: 41-45.
- Tahir, J. H., S. S. Jburi, and N. H. Abd, (1994) "Epidemiology of Parasitic *Contracaecum* larva in Liza abu (Heckel) in Najaf area-Iraq", *Tech. Res. J.*, 19: 277-290. (In Arabic).
- Tamura, K. and M. Nei, (1993) "Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees", *Mol. Biol. Evol.*, 10: 512-526.
- Tan, M. and J. W. Armbruster, (2018) "Phylogenetic classification of extant genera of fishes of the order Cypriniformes (Teleostei: Ostariophysi)", *Zootaxa*, 4476 (1): 6-39.
- Turan, D. and C. Kaya, (2019) "New Record of *Alburnoides kosswigi* (Pisces: Leuciscidae) in the Ilgin Lake Basin", *J. Anatolian Environ. Anim. Sci.*, 4 (1): 39-42.
- Turan, D., C. Kaya, F. Güler Ekmekçi, and E. Doğan (2014) "Three new species of Alburnoides (Teleostei: Cyprinidae) from Euphrates River, Eastern Anatolia, Turkey", Zootaxa, 3754 (2): 101-116.
- Turan D., Y. Bektas, C. Kaya, and E. Bayçelebi (2016) "Alburnoides diclensis (Actinopterygii: Cyprinidae), a new species of cyprinid fish from the upper Tigris River, Turkey", Zootaxa., 4067:79-87.
- Valles-Vega, I., D. Molina-Fernández, R. Benítez, S. Hernández-Trujillo, and F. J. Adroher, (2017) "Early development and life cycle of *Contracaecum multipapillatum* s.l. from a brown pelican *Pelecanus occidentalis* in the Gulf of California, Mexico", *Dis. Aquat. Org.*, 125: 167-178.
- Ward, R. D., T. S. Zemlak, B. H. Innes, P. R. Last, and P. D. Hebert, (2005) "DNA barcoding Australia's fish species", *Philosophical Transactions of the Royal Society of London B: Biol. Sci.*, 360 (1462): 1847-1857.
- Whitfield, A. K., and J. Heeg, (1977) "On the life cycles of the cestode Ptychobothrium belones and nematodes of the genus Contracaecum from Lake St. Lucia, Zululand", *South Afr. J. Sci.*, 73: 121-122.
- Yagi, K. K. Nagasawa, H. Ishikura, A. Nakagawa, N. Sato, K. Kikuchi, and H. Ishikura, (1996) "Female worm *Hysterothylacium aduncum* extracted from human: A case report", *Jap. J. Parasitol.*, 45(1): 12-23.
- Younis, A. E., A. I. Saad, and J. M. Rabei, (2017) "The occurrence of *Contracaecum* sp. larvae (Nematoda: Anisakidae) in four teleostean species from Lake Nasser, Egypt: morphological and molecular studies", *J. Basic Appl. Zool.*, 78(9): 1-13.

- Zhang, Y., W. Chen, R. Lin, M. Huang, H. Song, and X. Zhu, (2009). "Molecular identification of Contracaecum rudolphii (Nematoda: Anisakidae) from *Phalacrocorax carbosinensis* in Guangzhou zoo", *J. Trop. Med.*, 9(1): 1-3.
- Zhu, X. Q., S. D'Amelio, H. W. Palm, L. Paggi, M. George-Nascimento, and R. B. Gasser, (2002) "SSCP-based identification of members within the *Pseudoterranova decipiens* complex (Nematoda: scaridoidea: Anisakidae) using genetic markers in the internal transcribed spacers of ribosomal DNA", *Parasitol.*, 124: 615-623.
- Zhu, X. Q., S. D'Amelio, L. Paggi, and R. B. Gasser, (2000) "Assessing sequence variation in the internal transcribed spacers of ribosomal DNA within and among members of the *Contracaecum osculatum* complex (Nematoda: Ascaridoidea: Anisakidae)", *Parasitol. Res.*, 86: 677-683.
- Zhu, X. Q., S. D'Amelio, M. Hu, L. Paggi, and R. B. Gasser, (2001) "Electrophoretic detection of population variation within *Contracaecum ogmorhini* (Nematoda: Ascaridoidea: Anisakidae)", *Electrophoresis.*, 22: 1930-1934.
- Zuo, S., P. W. Kania, F. Mehrdana, M. H. Marana, and K. Buchmann, (2018) "Contracaecum osculatum and other anisakid nematodes in grey seals and cod in the Baltic Sea: molecular and ecological links", J. Helminthol., 92: 81–89.

Appendices

Ł Dowi	nload	<u>GenBank</u> <u>Graphics</u>	▼ <u>Next</u> ▲ <u>Previous</u> ≪ <u>Descriptions</u>						
Contra	acaec	um rudolphii isolate CrBG8 internal transcribe	ed spacer 1, partial sequence; 5.8S ribosomal RNA gene,						
complete sequence; and internal transcribed spacer 2, partial sequence									
See	See 1 more title(s) V								
Dango	1.1.6	445 ConRept. Craphics	Navt Match & Draviour Match						
Score	1.1 0	Expect Identities Gaps	Strand						
817 bit	s(442)	0.0 444/445(99%) 0/445(09	%) Plus/Minus						
Query	3	ACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGA	ACGCCTCGACTCATCG 62						
Sbjct	445	ACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGA	ACGCCTCGACTCATCG 386						
Query	63	GTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGG	GCGGCCCTCACGCAGG 122						
Sbjct	385	GICAACIIIGGAAAIGAAAGGAAACGGIIGIGIIIIGGGIIIIGG	GCGGCCCTCACGCAGG 326						
Shict	325								
Query	183	ACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGAC	CACCGTTGTTGAGAAT 242						
Sbjct	265	ACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGAC	 CACCGTTGTTGAGAAT 206						
Query	243	AACGAGGAAATGAGCGCCATCGATCCGCCTTTCTAGCATATCGGA	ATCACTCACTTCCCCT 302						
Sbjct	205	AACGAGGAAATGAGCGCCCATCGATCCGCCTTTCTAGCATATCGGA	ATCACTCACTTCCCCT 146						
Query	303	CAACACACAGCAAGCCATAAGCCATTGTCAGCCAAATGAAAAACA	AGCCGACGGCTGCCAC 362						
Sbjct	145	ĊĂĂĊĂĊĂĊĂĠĊĂĂĠĊĊĂŦĂĂĠĊĊĂŦŦĠŦĊĂĠĊĊĂĂĂŦĠĂĂĂĂĂĊĂ	ÁĞĊĊĠĂĊĠĠĊŦĠĊĊĂĊ 86						
Query	363		GGAATTTATGCACGTA 422						
SUJCT	423		GGAATTTATGCACGTA 26						
Sbjct	25	AGGAGACTTTTTGGTTTGGCTCGAT 1							

Fig. (24): Pair wise alignment ITS-1 sequence of *Contracaecum* larva collected from *Acanthobrama marmid*, Query is the study or sample sequence and Subject is the GenBank sequence.

Dowr	nload •	GenBank G	iraphics			▼ <u>Next</u> ▲ <u>Previous</u> ≪ <u>Descriptions</u>
Contra	acaecu	ım rudolphii is	olate CrBG8 intern	al transcribed spa	cer 1, partia	al sequence; 5.8S ribosomal RNA gene
comple	ete se	quence; and in	iternal transcribed	spacer 2, partial s	equence	
Sequenc	ce ID: <u>F.</u>	1467618.1 Lengt	th: 876 Number of Mat	ches: 1		
See	THOIE	title(s) •				
Range	1: 1 to	445 GenBank G	raphics		V Next N	Match A Previous Match
Score 822 bit	s(445)	Expect 0.0	Identities 445/445(100%)	Gaps 0/445(0%)	Strand Plus/Minus	s
Query	3	ACGACTCATCAACA	ACGCCCGCATATCCAAGAA	TGGAACGGCGGGACGCC	TCGACTCATCG	62
Sbjct	445	ACGACTCATCAACA	ACGCCCGCATATCCAAGAA	TGGAACGGCGGGACGCC	TCGACTCATCG	386
Query	63	GTCAACTTTGGAAA	TGAAAAGAAACGGTTGTG	TTTTGGGTTTTGGCGGC	CCTCACGCAGG	122
Sbjct	385	GTCAACTTTGGAAA	TGAAAAGAAACGGTTGTG	GTTTTGGGTTTTGGCGGC	CCTCACGCAGG	326
Query	123	GCTCATTAAGTCTG	CTCAACTCATAGAGAGGA	ACTTTCTCCCCACCTTT	CATTGCTACCG	182
Sbjct	325	GCTCATTAAGTCTC	sétékkétéktágágágág	Actitictccccacciti	CATTGCTACCG	266
Query	183	ACGGTCCGGGCGAT	AGCTAGGTGAGGCGTAGA	CGCCAAAGTGGACACCG	TTGTTGAGAAT	242
Sbjct	265	ACGGTCCGGGCGAT	TAGCTAGGTGAGGCGTAGA	CGCCAAAGTGGACACCG	TTGTTGAGAAT	206
Query	243					302
Ouerv	303	CAACACACACAGCAAC	SCCATAAGCCATTGTCAG			362
Sbjct	145	CAACACACAGCAAG	GCCATAAGCCATTGTCAGC		ACGGCTGCCAC	86
Query	363	CACATGTGTATGAC	TCGCTGCATGGCTCACGA	TTACGCGCAAATGGAAT	TTATGCACGTA	422
Sbjct	85	CACATGTGTATGAC	CTCGCTGCATGGCTCACGA	TTACGCGCAAATGGAAT	TATGCACGTA	26
Query	423	AGGAGACTTTTTGG	STTTGGCTCGAT 447			
Shict	25	AGGAGACTTTTTGG	TTTGGCTCGAT 1			

Fig. (25): Pair wise alignment ITS-1 sequence of *Contracaecum* larva collected from *Arabibarbus grypus*, Query is the study or sample sequence and Subject is the GenBank sequence.

La Dow	nload	GenBank Graphics	▼ <u>Next</u> ▲ <u>Previous</u> ≪ <u>Descriptions</u>						
Contra	Contracaecum rudolphii isolate CrBG8 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene,								
compl	lete se	quence; and internal transcribed spacer 2, partial	l sequence						
Sequen	ce ID: F	J467618.1 Length: 876 Number of Matches: 1							
See	THION								
Range	1: 1 to	445 GenBank Graphics	▼ <u>Next Match</u> ▲ <u>Previous Match</u>						
Score 817 bit	ts(442	Expect Identities Gaps 0.0 444/445(99%) 0/445(0%)	Strand Plus/Minus						
Query	3	ACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACGC	CTCGACTCATCG 62						
Sbjct	445	ACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACGC	CTCGACTCATCG 386						
Query	63	GTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGG	SCCCTCACGCAGG 122						
Sbjct	385	ġtcaactttiggaaatgaaaagaaacggttgtgttttigggttttggcgg	sccttacscass 326						
Query	123	GCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCCCCCCACCTT	TTCATTGCTACCG 182						
Sbjct	325	GCTCATTAAGTCTGCTCAACTCATAGAGAGGGAACTTTCTCCCCACCTT	TÉATTGÉTÁCEG 266						
Query	183	ACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACC	CGTTGTTGAGAAT 242						
Sbjct	265	ACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACC	CGTTGTTGAGAAT 206						
Query	245								
Query	303								
Sbjct	145	CAACACACAGCAAGCCATAAGCCATTGTCAGCCAAATGAAAAACAGCC	CACGGCTGCCAC 86						
Query	363	CACATGTGTATGACTCGCTGCATGGCTCACGATTACGCGCAAATGGAA	ATTTATGCACGTA 422						
Sbjct	85	CACATGTGTATGACTCGCTGCATGGCTCACGATTACGCGCAAATGGAA	ITTTATGCACGTA 26						
Query	423	AGGAGACTTTTTGGTTTGGCTCGAT 447							
Sbjct	25	AGGAGACTTTTTGGTTTGGCTCGAT 1							

Fig. (26): Pair wise alignment ITS-1 sequence of *Contracaecum* larva collected from *Capoeta trutta*, Query is the study or sample sequence and Subject is the GenBank sequence.

1.0			
Low	nload	GenBank Graphics	▼ <u>Next</u> ▲ <u>Previous</u> ≪ <u>Descriptions</u>
Contra	acaec	ım rudolphii isolate CrBG8 internal transcri	bed spacer 1, partial sequence; 5.8S ribosomal RNA gene,
compl	ete se	quence; and internal transcribed spacer 2,	partial sequence
Sequen	te ID: <u>F</u>	title(s)	
occ	111010		
Range	1: 1 to	445 GenBank Graphics	V Next Match A Previous Match
Score 822 bit	s(445)	Expect Identities Gaps 0.0 445/445(100%) 0/445	Strand 5(0%) Plus/Minus
Query	3	ACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCG	GGACGCCTCGACTCATCG 62
Sbjct	445	ACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCG	GGACGCCTCGACTCATCG 386
Query	63	GTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTT	TGGCGGCCCTCACGCAGG 122
Sbjct	385	GTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTT	TGGCGGCCCTCACGCAGG 326
Query	123	GCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCC	CACCTTTCATTGCTACCG 182
Sbjct	325	dctcattaagtctgctcaactcatagagaggaactttctccc	CACCTTTCATTGCTACCG 266
Query	183	ACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTG	GACACCGTTGTTGAGAAT 242
Sbjct	265	ACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTG	GACACCGTTGTTGAGAAT 206
Query	243	AACGAGGAAATGAGCGCCATCGATCCGCCTTTCTAGCATATC	GGATCACTCACTTCCCCT 302
Sugar	205		
Shict	145		
Query	363	CACATGTGTATGACTCGCTGCATGGCTCACGATTACGCGCAA	ATGGAATTTATGCACGTA 422
Sbjct	85	CACATGTGTATGACTCGCTGCATGGCTCACGATTACGCGCAA	IIIIIIIIIIIIIIIIA ATGGAATTTATGCACGTA 26
Query	423	AGGAGACTTTTTGGTTTGGCTCGAT 447	
Sbjct	25	AGGAGACTTTTTGGTTTGGCTCGAT 1	

Fig. (27): Pair wise alignment ITS-1 sequence of *Contracaecum* larva collected from *Carasobarbus luteus*, Query is the study or sample sequence and Subject is the GenBank sequence.

Down	nload	<u>GenBank</u> <u>Graphics</u>	▼ <u>Next</u> ▲ <u>Previous</u> ≪ <u>Description</u>
Contra	acaec	ım rudolphii isolate CrBG8 internal transc	cribed spacer 1, partial sequence; 5.8S ribosomal RNA ge
compl	ete se	quence; and internal transcribed spacer 2	2, partial sequence
Sequend	ce ID: <u>F</u>	1467618.1 Length: 876 Number of Matches: 1	
Sec.	1 more		
Range	1: 1 to	445 GenBank Graphics	▼ Next Match ▲ Previous Match
Score 822 bit	s(445)	Expect Identities Gap: 0.0 445/445(100%) 0/4	os Strand 145(0%) Plus/Minus
Query	3	ACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGG	GCGGGACGCCTCGACTCATCG 62
Sbjct	445	ACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGG	IIIIIIIIIIIIIIIIIIIIIIIGGGGACGCCTCGACTCATCG 386
Query	63	GTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGT	TTTTGGCGGCCCTCACGCAGG 122
Sbjct	385	GTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGT	TTTTGGCGGCCCTCACGCAGG 326
Query	123	GCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTC	CCCCACCTTTCATTGCTACCG 182
Sbjct	325	dctcattaagtctdctcaactcatagagaagaactttctc	cccAcctttcAttGctAccG 266
Query	183	ACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAG	TGGACACCGTTGTTGAGAAT 242
Sbjct	265	ACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAG	STGGACACCGTTGTTGAGAAT 206
Query	243		
Ouerv	303		
Sbjct	145	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	AAAACAGCCGACGGCTGCCAC 86
Query	363	CACATGTGTATGACTCGCTGCATGGCTCACGATTACGCGC	AAATGGAATTTATGCACGTA 422
Sbjct	85	CACATGTGTATGACTCGCTGCATGGCTCACGATTACGCGC	CAAATGGAATTTATGCACGTA 26
Query	423	AGGAGACTTTTTGGTTTGGCTCGAT 447	
Sbjct	25	AGGAGACTTTTTGGTTTGGCTCGAT 1	

Fig. (28): Pair wise alignment ITS-1 sequence of *Contracaecum* larva collected from *Chondrostoma regium*, Query is the study or sample sequence and Subject is the GenBank sequence.

La Down	nload	GenBank Graphics	▼ <u>Next</u> ▲ <u>Pre</u>	vious ≪ <u>Descriptions</u>					
Contra	Contracaecum rudolphii isolate CrBG8 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene,								
compl	ete se	quence; and internal transcribed spacer 2, partia	sequence						
Sequen	ce ID: F	1467618.1 Length: 876 Number of Matches: 1							
566	THOR								
Range	1: 1 to	445 GenBank Graphics	Vext Match A Previous Match	h					
Score 822 bit	ts(445)	Expect Identities Gaps 0.0 445/445(100%) 0/445(0%)	Strand Plus/Minus						
Query	3	ACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACG	CTCGACTCATCG 62						
Sbjct	445	ACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACG	CTCGACTCATCG 386						
Query	63	GTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGC	CCCTCACGCAGG 122						
Sbjct	385	gtcaactttggaaatgaaaagaaacggttgtgttttgggttttggcg	CCCTCACGCAGG 326						
Query	123	GCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCT	TCATTGCTACCG 182						
Sbjct	325	dctcAttAAdtctdctcAActcAtAdAdddddaActttctccccAcctt	TCATTGCTACCG 266						
Query	183	ACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACC	GTTGTTGAGAAT 242						
Sbjct	265	ACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACC	GTTGTTGAGAAT 206						
Query	243	AACGAGGAAATGAGCGCCATCGATCCGCCTTTCTAGCATATCGGATC4	CTCACTTCCCCT 302						
Sbjct	205	AACGAGGAAATGAGCGCCATCGATCCGCCTTTCTAGCATATCGGATCA	CTCACTTCCCCT 146						
Query	303								
Sugar	363								
Sbjct	85	CACATGTGTATGACTCGCTGCATGGCTCACGATTACGCGCAAATGGAA	TTTATGCACGTA 26						
Query	423	AGGAGACTTTTTGGTTTGGCTCGAT 447							
Sbjct	25								

Fig. (29): Pair wise alignment ITS-1 sequence of *Contracaecum* larva collected from *Cyprinus carpio*, Query is the study or sample sequence and Subject is the GenBank sequence.

Dow	nload •	GenBank Gr	aphics			▼ <u>Next</u> ▲ <u>Previous</u> ≪ <u>Descriptions</u>
Contra compl Sequence See	ete se ce ID: <u>F</u> 1 more	um rudolphii iso quence; and in J467618.1 Length title(s) ~	blate CrBG8 interna ternal transcribed n: 876 Number of Matc	al transcribed spa spacer 2, partial s .hes: 1	cer 1, partial : equence	sequence; 5.8S ribosomal RNA gene
Range	1: 1 to	445 GenBank Gr	aphics		▼ Next Ma	tch A Previous Match
Score 822 bit	s(445)	Expect 0.0	Identities 445/445(100%)	Gaps 0/445(0%)	Strand Plus/Minus	
Query	3 445	ACGACTCATCAACA	CGCCCGCATATCCAAGAA 	TGGAACGGCGGGACGCCT TGGAACGGCGGGACGCCT	CGACTCATCG	52 386
Query	63 385	GTCAACTTTGGAAA 	TGAAAAGAAACGGTTGTG 	TTTTGGGTTTTGGCGGCC	CTCACGCAGG	122
Query	123 325	GCTCATTAAGTCTG	CTCAACTCATAGAGAGGA 	ACTTTCTCCCCACCTTTC	ATTGCTACCG	182 266
Query	183 265	ACGGTCCGGGCGATA	AGCTAGGTGAGGCGTAGA 	CGCCAAAGTGGACACCGT	TGTTGAGAAT	242
Query	243 205	AACGAGGAAATGAG	CGCCATCGATCCGCCTTT 	CTAGCATATCGGATCACT	CACTTCCCCT	302 146
Query Sbjct	303 145	CAACACACAGCAAG CAACACACAGCAAG	CCATAAGCCATTGTCAGC	CAAATGAAAAACAGCCGA CAAATGAAAAACAGCCGA	CGGCTGCCAC	362 86
Query Sbjct	363 85	CACATGTGTATGAC	TCGCTGCATGGCTCACGA TCGCTGCATGGCTCACGA	TTACGCGCAAATGGAATT 	TATGCACGTA TATGCACGTA	422 26
Juery	423	AGGAGACTTTTTGG	TTTGGCTCGAT 447			

Fig. (30): Pair wise alignment ITS-1 sequence of *Contracaecum* larva collected from *Luciobarbus barbulus*, Query is the study or sample sequence and Subject is the GenBank sequence.

Dowr	nload •	✓ GenBank Gr	raphics			▼ <u>Next</u> ▲ <u>Previous</u> ≪ <u>Descriptions</u>
Contra comple Sequence See :	ete se ce ID: <u>F.</u> 1 more	um rudolphii iso quence; and int J467618.1 Length e title(s) ~	olate CrBG8 intern ternal transcribed n: 876 Number of Ma	nal transcribed spa d spacer 2, partial tches: 1	icer 1, partial sequence	l sequence; 5.8S ribosomal RNA gene
Range	1: 1 to	445 GenBank Gr	aphics		▼ <u>Next M</u>	latch A Previous Match
Score 811 bit	s(439)	Expect 0.0	Identities 443/445(99%)	Gaps 0/445(0%)	Strand Plus/Minus	
)uery	3	ACGACTCATCAACAC	CGCCCGCATATCCAGAA	ATGGAACGGCGGGACGC	TCGACTCATCG	62
bjct	445	ACGACTCATCAACAC	CGCCCGCATATCCAAGA	ATGGAACGGCGGGACGCC	TCGACTCATCG	386
)uery	63	GTCAACTTTGGAAA	TGAAAAGAAACGGTTGT	GTTTTGGGTTTTGGCGGG	CCTCACGCAGG	122
bjct	385	GTCAACTTTGGAAA	TGAAAAGAAACGGTTGT	GTTTTGGGTTTTGGCGGG	CCTCACGCAGG	326
luery	123	GCTCATTAAGTCTG	CTCAACTCATAGAGAGG	AACTTTCTCCCCACCTTT	CATTGCTACCG	182
bjct	325	GCTCATTAAGTCTG	ctcAActcAtAGAGAGG	AACTITICTCCCCACCTTI	CATTGCTACCG	266
luery	183	ACGGTCCGGGCGAT	AGCTAGGTGAGGCGTAG	ACGCCAAAGTGGACACCC	TTGTTGAGAAT	242
bjct	265	ACGGTCCGGGCGATA	AGCTAGGTGAGGCGTAG	ACGCCAAAGTGGACACC	TTGTTGAGAAT	206
Juery	245					302
Duerv	303	CAACACACAGCAAG	CATAAGCCATTGTCAG	CCAAATGAAAAAACAGCCG	ACGGCTGCCAC	362
bjct	145	CAACACACAGCAAG	CATAAGCCATTGTCAG	CCAAATGAAAAACAGCCG	ACGGCTGCCAC	86
Juery	363	CACATGTGTATGAC	TCGCTGCATGGCTCACG	ATTACGCGCAAATGGAAT	TTATGCACGTA	422
bjct	85	CACATGTGTATGAC	TCGCTGCATGGCTCACG	ATTACGCGCAAATGGAAT	TTATGCACGTA	26
)uery	423	AGGAGACTTTTTGG	TTTGGCTCGAT 447			
shict	25	AGGAGACTTTTTGG	TTTGGCTCGAT 1			

Fig. (31): Pair wise alignment ITS-1 sequence of *Contracaecum* larva collected from *Luciobarbus esocinus*, Query is the study or sample sequence and Subject is the GenBank sequence.

Dowr	load	GenBank Graphics	▼ <u>Next</u> ▲ <u>Previous</u> ≪ <u>Descriptions</u>
Contra	caec	um rudolphii isolate CrBG8 internal transcribed spa	acer 1, partial sequence; 5.8S ribosomal RNA gene
comple	ete se	quence; and internal transcribed spacer 2, partial s	sequence
Sequend	te ID: <u>F</u>	J467618.1 Length: 876 Number of Matches: 1	
See .	1 more		
Range	1: 1 to	445 GenBank Graphics	▼ Next Match ▲ Previous Match
Score 822 bit	s(445)	Expect Identities Gaps 0.0 445/445(100%) 0/445(0%)	Strand Plus/Minus
Query	3	ACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACGCC	TCGACTCATCG 62
Sbjct	445	ACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGACGCC	TCGACTCATCG 386
Query	63	GTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGC	CCTCACGCAGG 122
Sbjct	385	GTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGCGGC	CCTCACGCAGG 326
Query	123	GCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTT	CATTGCTACCG 182
Sbjct	325	GCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACCTTT	CATTGCTACCG 266
Query	183	ACGGTCCGGGCGATAGCTAGGTGAGGCGTAGACGCCAAAGTGGACACCG	TTGTTGAGAAT 242
Duery	205		
Sbjct	205	AACGAGGAAATGAGCGCCCATCGATCCGCCTTTCTAGCATATCGGATCAC	TCACTTCCCCT 146
Query	303	CAACACACAGCAAGCCATAAGCCATTGTCAGCCAAATGAAAAACAGCCG	ACGGCTGCCAC 362
Sbjct	145	CAACACACAGCAAGCCATAAGCCATTGTCAGCCAAATGAAAAACAGCCG	 ACGGCTGCCAC 86
Query	363	CACATGTGTATGACTCGCTGCATGGCTCACGATTACGCGCAAATGGAAT	TTATGCACGTA 422
Sbjct	85	CACATGTGTATGACTCGCTGCATGGCTCACGATTACGCGCAAATGGAAT	TTATGCACGTA 26
Query	423	AGGAGACTTTTTGGTTTGGCTCGAT 447	
Sbjct	25	ÁĠĠĂĠĂĊŦŦŦŦŦĠĠŦŦŦĠĠĊŦĊĠĂŦ 1	

Fig. (32): Pair wise alignment ITS-1 sequence of *Contracaecum* larva collected from *Luciobarbus xanthopterus*, Query is the study or sample sequence and Subject is the GenBank sequence.

Dowr	nload	<u>GenBank</u> Graphics	▼ <u>Next</u> ▲ <u>Previous</u> ≪ <u>Descriptions</u>
Contra	caec	um rudolphii isolate CrBG8 internal transcribed	spacer 1, partial sequence; 5.8S ribosomal RNA gene,
compl	ete se	quence; and internal transcribed spacer 2, parti	al sequence
Sequend	te ID: <u>F</u>	J467618.1 Length: 876 Number of Matches: 1	
500	1 more		
Range	1: 1 to	445 GenBank Graphics	Vext Match A Previous Match
Score 822 bit	s(445)	Expect Identities Gaps 0.0 445/445(100%) 0/445(0%)	Strand Plus/Minus
Query	3	ACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGAC	GCCTCGACTCATCG 62
Sbjct	445	ACGACTCATCAACACGCCCGCATATCCAAGAATGGAACGGCGGGGAC	GCTTCGACTCATCG 386
Query	63	GTCAACTTTGGAAATGAAAAGAAACGGTTGTGTTTTGGGTTTTGGC	GGCCCTCACGCAGG 122
Sbjct	385	ĠŦĊĂĂĊŦŦŦĠĠĂĂĂŦĠĂĂĂĂĠĂĂĂĊĠĠŦŦĠŦĠŦŦŦŦĠĠĠŦŦŦŦĠĠĊ	ĠĠĊĊĊŤĊĂĊĠĊĂĠĠ 326
Query	123	GCTCATTAAGTCTGCTCAACTCATAGAGAGGAACTTTCTCCCCACC	TTTCATTGCTACCG 182
Sbjct	325	GCTCATTAAGTCTGCTCAACTCATAGAGAGGGAACTTTCTCCCCACC	TTTCATTGCTACCG 266
Shict	265		
Query	243	AACGAGGAAATGAGCGCCATCGATCCGCCTTTCTAGCATATCGGAT	CACTCACTTCCCCT 302
Sbjct	205	AACGAGGAAATGAGCGCCATCGATCCGCCTTTCTAGCATATCGGAT	CACTCACTTCCCCT 146
Query	303	CAACACAGCAAGCCATAAGCCATTGTCAGCCAAATGAAAAACAG	CCGACGGCTGCCAC 362
Sbjct	145	CAACACACAGCAAGCCATAAGCCATTGTCAGCCAAATGAAAAAACAG	IIIIIIIIIIIIIII CCGACGGCTGCCAC 86
Query	363	CACATGTGTATGACTCGCTGCATGGCTCACGATTACGCGCAAATGG	AATTTATGCACGTA 422
Sbjct	85	cacatetetetetecectecateectcaceattacececatee	AATTTATGCACGTA 26
Query	423	AGGAGACTTTTTGGTTTGGCTCGAT 447	
Sbjct	25	AGGAGACTTTTTGGTTTGGCTCGAT 1	

Fig. (33): Pair wise alignment ITS-1 sequence of *Contracaecum* larva collected from *Mactacembelus mastacembelus*, Query is the study or sample sequence and Subject is the GenBank sequence.

Low		Can Danie C							
Down	noad	GenBank G	raphics			▼ <u>Next</u> ▲ <u>Previous</u> ≪ <u>Descriptions</u>			
Contra	ontracaecum rudolphii isolate CrBG16 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA								
gene,	comp	lete sequence;	and internal trans	scribed spacer 2, partia	al sequence				
Sequence	ce ID: F	<u>1467620.1</u> Lengt	n: 876 Number of Man	tches: 1					
Range	1: 582	to 876 GenBank	Graphics		Vext Match	Previous Match			
Score 545 bit	s(295)	Expect 4e-151	Identities 295/295(100%)	Gaps 0/295(0%)	Strand Plus/Plus				
Query	1	CGCTGGCACGTCTG	GCTGAGGGTCGAAATAT	TCAATACTATCCGCACAATGCT	TCAGACG 60				
Sbjct	582	CGCTGGCACGTCTG	GCTGAGGGTCGAAATAT	TCAATACTATCCGCACAATGCT	TCAGACG 641				
Query	61	AAGCGTGTGGTGCT	TTCGACAAGCAGTGTCC	CTTTGGGGCGCTCCTTGTTTGG	TTTGAAC 120				
Sbjct	642	AAGCGTGTGGTGCT	TTCGACAAGCAGTGTCC	CTTTGGGGCGCGCTCCTTGTTTGG	TTTGAAC 701				
Query	121	GGCAACTTATTGCA	AAGATTTACTCGGTAAG	CAGCAATAATGGCCGTAAGTGT	GTGAGTG 180				
Sbjct	702	GGCAACTTATTGCA	AAGATTTACTCGGTAAG	CAGCAATAATGGCCGTAAGTGT	GTGAGTG 761				
Query	181	ATTGTGTACGTCCC	TCGATGCGGCCCCCAGT	ATTTGTTGACTGCCTCTGGTGG	TGACTGG 240				
Sbjct	762	ATTGTGTACGTCCC	tcGATGCGGCCCCCAGT	ATTTĠTTĠAĊŦĠĊĊŦĊŦĠĠŦĠĠ	TGÁCTGG 821				
Query	241	GGGTTAAGTATCGG	ATTATCGAAAGAATGTG	ACATGTCTTATACGGTTATGTG	CT 295				
Sbjct	822	ĠĠĠŦŦĂĂĠŦĂŦĊĠĠ	ATTATCGAAAGAATGTG	ACATGTCTTATACGGTTATGTG	ĊT 876				

Fig. (34): Pair wise alignment ITS-2 sequence of *Contracaecum* larva collected from *Acanthobrama marmid*, Query is the study or sample sequence and Subject is the GenBank sequence.

L Down	load	✓ <u>GenBank</u> G	raphics			▼ <u>Next</u> ▲ <u>Previous</u> ≪ <u>Descriptions</u>
Contra	caec	um rudolphii is	olate CrBG16 interna	l transcribed space	r 1, partial se	equence; 5.8S ribosomal RNA
sequenc	e ID: E	lete sequence; J467620.1 Lengt	h: 876 Number of Matche	s: 1	il sequence	
Range 1	: 582	to 876 GenBank	Graphics		Vext Match	Previous Match
Score 545 bits	s(295)	Expect 4e-151	Identities 295/295(100%)	Gaps 0/295(0%)	Strand Plus/Plus	
Query	1	CGCTGGCACGTCTG	GCTGAGGGTCGAAATATTCA	ATACTATCCGCACAATGCT	TCAGACG 60	
Sbjct	582	CGCTGGCACGTCTG	GCTGAGGGTCGAAATATTCA	ATACTATCCGCACAATGCT	TCAGACG 641	
Query	61	AAGCGTGTGGTGCT	TTCGACAAGCAGTGTCCCTT	TGGGGCGCTCCTTGTTTGG	TTTGAAC 120	,
Sbjct	642	AAGCGTGTGGTGCT	TTCGACAAGCAGTGTCCCTT	TGGGGCGCTCCTTGTTTGG	TTTGAAC 701	
Query	121	GGCAACTTATTGCA	AAGATTTACTCGGTAAGCAG	CAATAATGGCCGTAAGTGT	GTGAGTG 180	1
Sbjct	702	GGCAACTTATTGCA	AAGATTTACTCGGTAAGCAG	CAATAATGGCCGTAAGTGT	GTGAGTG 761	
Query	181	ATTGTGTACGTCCC	TCGATGCGGCCCCCAGTATT	TGTTGACTGCCTCTGGTGG	TGACTGG 240	
Sbjct	762	ATTGTGTACGTCCC	TCGATGCGGCCCCCAGTATT	TGTTGACTGCCTCTGGTGG	TGACTGG 821	
Query	241	GGGTTAAGTATCGG	ATTATCGAAAGAATGTGACA	TGTCTTATACGGTTATGTG	CT 295	
Sbjct	822	GGGTTAAGTATCGG	ATTATCGAAAGAATGTGACA	TGTCTTATACGGTTATGTG	CT 876	

Fig. (35): Pair wise alignment ITS-2 sequence of *Contracaecum* larva collected from *Arabibarbus grypus*, Query is the study or sample sequence and Subject is the GenBank sequence.

<u>Dowr</u>	nload •	 <u>GenBank</u> Gra 	aphics			▼ <u>Next</u> ▲ <u>Previous</u> ≪ <u>Descriptions</u>				
Contra gene, c Sequenc	Contracaecum rudolphii isolate CrBG16 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence equence ID: <u>FJ467620.1</u> Length: 876 Number of Matches: 1									
Range 1	1: 582	to 876 GenBank (Graphics		Vext Match	A Previous Match				
Score 545 bits	5(295)	Expect 4e-151	Identities 295/295(100%)	Gaps 0/295(0%)	Strand Plus/Plus					
Query	1	CGCTGGCACGTCTGG	CTGAGGGTCGAAATATTC	AATACTATCCGCACAATGCT	TCAGACG 60					
Sbjct	582	CGCTGGCACGTCTGG	CTGAGGGTCGAAATATTC	AATACTATCCGCACAATGCT	TCAGACG 641					
Query	61	AAGCGTGTGGTGCTT	TCGACAAGCAGTGTCCCT	TTGGGGCGCTCCTTGTTTGG	TTTGAAC 120	1				
5bjct	642	AAGCGTGTGGTGCTT	TCGACAAGCAGTGTCCCT	TTGGGGCGCTCCTTGTTTGG	TTTGAAC 701					
Query	121	GGCAACTTATTGCAA	AGATTTACTCGGTAAGCA	GCAATAATGGCCGTAAGTGT	GTGAGTG 180					
Sbjct	702	GGCAACTTATTGCAA	AGATTTACTCGGTAAGCA	GCAATAATGGCCGTAAGTGT	GTGAGTG 761					
Query	181	ATTGTGTACGTCCCT	CGATGCGGCCCCCAGTAT	TTGTTGACTGCCTCTGGTGG	TGACTGG 240					
Sbjct	762	ATTGTGTACGTCCCT	CGATGCGGCCCCCAGTAT	TTGTTGACTGCCTCTGGTGG	TGACTGG 821					
Query	241	GGGTTAAGTATCGGA	TTATCGAAAGAATGTGAC	ATGTCTTATACGGTTATGTG	CT 295					
	822	CCCTTAACTATCCCA	TTATCGAAAGAATGTGAC	ATGTCTTATACGGTTATCTC	CT 976					

Fig. (36): Pair wise alignment ITS-2 sequence of *Contracaecum* larva collected from *Capoeta trutta*, Query is the study or sample sequence and Subject is the GenBank sequence.

Contra	caeci	um rudolphii iso lete sequence: a	late CrBG16 interna	l transcribed space	er 1, partial	l sequence; 5.8S ribosomal RNA
Sequenc	e ID: E	J467620.1 Length:	: 876 Number of Matche	s:1	atsequence	-
Range 1	L: 582	to 876 GenBank	Graphics		V Next Ma	tch 🔺 Previous Match
Score 545 bit	s(295)	Expect) 4e-151	Identities 295/295(100%)	Gaps 0/295(0%)	Strand Plus/Plus	
Query Sbict	1	CGCTGGCACGTCTGG	CTGAGGGTCGAAATATTCA	ATACTATCCGCACAATGC	TTCAGACG 6	50 541
Query	61	AAGCGTGTGGTGCTT	TCGACAAGCAGTGTCCCTT	TGGGGCGCTCCTTGTTTG	GTTTGAAC 1	120
Sbjct Ouery	642 121	AAGCGTGTGGTGCTT GGCAACTTATTGCAA	TCGACAAGCAGTGTCCCTT AGATTTACTCGGTAAGCAG	TGGGGCGCTCCTTGTTTG	GTTTGAAC 7 TGTGAGTG 1	'01 180
Sbjct	702	GGCAACTTATTGCAA	AGATTTACTCGGTAAGCAG	CAATAATGGCCGTAAGTG	TGTGAGTG 7	/61
Query	181	ATTGTGTACGTCCCT	CGATGCGGCCCCCAGTATT	TGTTGACTGCCTCTGGTG	GTGACTGG 2	240
Sbjct Query	762 241	ATTGTGTACGTCCCT GGGTTAAGTATCGGA	ĊĠĂŦĠĊĠĠĊĊĊĊĊĂĠŦĂŦŦ TTATĊĠAAAĠAATĠŦĠAĊA	İĞİİĞACİGCCİCİGGIG TGICTIATACGGITATGI	ĠŦĠĂĊŦĠĠ 8 GCT 295	321
Shict	822				 GCT 876	

Fig. (37): Pair wise alignment ITS-2 sequence of *Contracaecum* larva collected from *Carasobarbus luteus*, Query is the study or sample sequence and Subject is the GenBank sequence.

1 Dour	load	ConDonk C	raphics			Novt + Dravious - «Descriptions
Contro	1040		alata CrBC1c inte	ornal transcribed and a	r 1 norticler -	
gene c	omn	lete sequence:	and internal tran	scribed spacer 2 partia	a 1, partial seq	uence; 5.85 hb050mat KNA
Sequence	e ID: F	1467620.1 Lengt	h: 876 Number of Ma	atches: 1	a. sequence	
Range 1	: 582	to 876 GenBank	Graphics		Vext Match	Previous Match
Score 545 bits	(295)	Expect) 4e-151	Identities 295/295(100%)	Gaps) 0/295(0%)	Strand Plus/Plus	
Query	1	CGCTGGCACGTCTG	GCTGAGGGTCGAAATA	TTCAATACTATCCGCACAATGCT	TCAGACG 60	
Sbjct	582	CGCTGGCACGTCTG	GCTGAGGGTCGAAATA	TTCAATACTATCCGCACAATGCT	TCAGACG 641	
Query	61	AAGCGTGTGGTGCT	TTCGACAAGCAGTGTC	CCTTTGGGGCGCTCCTTGTTTGG	TTTGAAC 120	
Sbjct	642	AAGCGTGTGGTGCT	TTCGACAAGCAGTGTC	cctttggggggggctccttgtttg	TTTGAAC 701	
Query	121	GGCAACTTATTGCA	AAGATTTACTCGGTAA	GCAGCAATAATGGCCGTAAGTG1	GTGAGTG 180	
Sbjct	702	ĠĠĊĂĂĊŦŦĂŦŦĠĊĂ	AAGATTTACTCGGTAA	GCAGCAATAATGGCCGTAAGTG1	GTGAGTG 761	
Query	181	ATTGTGTACGTCCC	TCGATGCGGCCCCCAG	TATTTGTTGACTGCCTCTGGTGG	TGACTGG 240	
Sbjct	762	ATTGTGTACGTCCC	TCGATGCGGCCCCCAG	TATTTGTTGACTGCCTCTGGTGG	STGACTGG 821	
Query	241	GGGTTAAGTATCGG	ATTATCGAAAGAATGT	GACATGTCTTATACGGTTATGTC	SCT 295	
Sbjct	822	GGGTTAAGTATCGG	GATTATCGAAAGAATGT	GACATGTCTTATACGGTTATGTC	GCT 876	

Fig. (38): Pair wise alignment ITS-2 sequence of *Contracaecum* larva collected from *Chondrostoma regium*, Query is the study or sample sequence and Subject is the GenBank sequence.

Contra		 <u>GenBank</u> Gra um rudolphii iso 	aphics late CrBG16 interna	l transcribed space	r 1, parti	▼ <u>Next</u> ▲ <u>Previous</u> ≪ <u>Description</u> al sequence; 5.8S ribosomal RNA
gene, Gequend	compl ce ID: <u>F.</u>	lete sequence; and 1467620.1 Length:	nd internal transcri 876 Number of Matche	bed spacer 2, partia s: 1	l sequen	ice
Range	1: 582	to 876 GenBank	Graphics		Vext N	Match A Previous Match
Score 545 bit	s(295)	Expect 4e-151	Identities 295/295(100%)	Gaps 0/295(0%)	Strand Plus/Plu	S
Query	1	CGCTGGCACGTCTGG	CTGAGGGTCGAAATATTCA	ATACTATCCGCACAATGCT	TCAGACG	60
Sbjct	582	CGCTGGCACGTCTGG	CTGAGGGTCGAAATATTCA	ATACTATCCGCACAATGCT	TCAGACG	641
Query	61	AAGCGTGTGGTGCTT	TCGACAAGCAGTGTCCCTT	TGGGGCGCTCCTTGTTTGG	TTTGAAC	120
Sbjct	642	AAGCGTGTGGTGCTT	TCGACAAGCAGTGTCCCTT	TGGGGCGCTCCTTGTTTGG	TTTGAAC	701
Query	121	GGCAACTTATTGCAA	AGATTTACTCGGTAAGCAG	CAATAATGGCCGTAAGTGT	GTGAGTG	180
Sbjct	702	GGCAACTTATTGCAA	AGATTTACTCGGTAAGCAG	CAATAATGGCCGTAAGTGT	GTGAGTG	761
Query	181	ATTGTGTACGTCCCT	CGATGCGGCCCCCAGTATT	TGTTGACTGCCTCTGGTGG	TGACTGG	240
Sbjct	762	ATTGTGTACGTCCCT	CGATGCGGCCCCCAGTATT	TGTTGACTGCCTCTGGTGG	TGACTGG	821
Query	241	GGGTTAAGTATCGGA	TTATCGAAAGAATGTGACA	TGTCTTATACGGTTATGTG	CT 295	
Sbjct	822	GGGTTAAGTATCGGA	TTATCGAAAGAATGTGACA	TGTCTTATACGGTTATGTG	CT 876	

Fig. (39): Pair wise alignment ITS-2 sequence of *Contracaecum* larva collected from *Cyprinus carpio*, Query is the study or sample sequence and Subject is the GenBank sequence.

<u>Dowr</u>	nload	GenBank Gr	aphics			▼ <u>Next</u> ▲ <u>Previous</u> ≪ <u>Descriptions</u>
Contra	icaeci	um rudolphii iso	late CrBG16 interna	transcribed space	r 1, partial	sequence; 5.8S ribosomal RNA
gene,	comp	lete sequence; a	and Internal transcril	ped spacer 2, partia	al sequence	
sequent	e in E	CIOLOTOT COURCU	or or matches			
Range	1: 582	to 876 GenBank	Graphics		 Next Matc 	<u>ch</u> A <u>Previous Match</u>
Score	s(295)	Expect 4e-151	Identities 295/295(100%)	Gaps 0/295(0%)	Strand Plus/Plus	
Juenu	1	COLLOCACOTOTO	CTGAGGGTCGAAATATTCA	TACTATCCGCACAATCC	TCAGACG 60)
Shict	582					11
buerry	502	AACCOLOTOTOTOT			TTTCAGE 40	+1
Query	01					20
Sbjct	642	AAGCGIGIGGIGCII	TUGALAAGCAGTGTCCCTT		STITGAAC 70	20
Query	121	GGCAACTTATTGCAA	AGATITACTCGGTAAGCAG(AATAATGGCCGTAAGTG	GIGAGTG 18	50
Sbjct	702	GGCAACTTATTGCAA	AGATTTACTCGGTAAGCAG	AATAATGGCCGTAAGTG	TGTGAGTG 76	51
Query	181	ATTGTGTACGTCCCT	CGATGCGGCCCCCAGTATT	GTTGACTGCCTCTGGTG	STGACTGG 24	10
Sbjct	762	ATTGTGTACGTCCCT	CGATGCGGCCCCCAGTATT	GTTGACTGCCTCTGGTG	STGACTGG 82	21
Query	241	GGGTTAAGTATCGGA	TTATCGAAAGAATGTGACA	GTCTTATACGGTTATGT	GCT 295	
Sbict	822	GGGTTAAGTATCGGA	TTATCGAAAGAATGTGACAT	GTCTTATACGGTTATGTC	CT 876	

Fig. (40): Pair wise alignment ITS-2 sequence of *Contracaecum* larva collected from *Luciobarbus barbulus*, Query is the study or sample sequence and Subject is the GenBank sequence.

<u>Dowr</u> Contra	Download ~ GenBank Graphics ▼ Next ▲ Previous ≪ Descriptions Contracaecum rudolphii isolate CrBG16 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA										
gene, o Sequenc	:omp :e ID: <u>F</u>	lete sequence; J467620.1 Lengt	and internal transci h: 876 Number of Matcl	ribed spacer 2, partial hes: 1	sequen	ice					
Range	1: 582	to 876 GenBank	Graphics		Vext N	Match 🔺 Previous Match					
Score 545 bit	s(295)	Expect 4e-151	Identities 295/295(100%)	Gaps 0/295(0%)	Strand Plus/Plu	IS					
Query	1	CGCTGGCACGTCTG	GCTGAGGGTCGAAATATTC	CAATACTATCCGCACAATGCTT	CAGACG	60					
5bjct	582	CGCTGGCACGTCTG	GCTGAGGGTCGAAATATTC	CAATACTATCCGCACAATGCTT	CAGACG	641					
Query	61	AAGCGTGTGGTGCT	TTCGACAAGCAGTGTCCCT	TTGGGGCGCTCCTTGTTTGGT	TTGAAC	120					
Sbjct	642	AAGCGTGTGGTGCT	TTCGACAAGCAGTGTCCCT	TTTGGGGCGCTCCTTGTTTGGT	TTGAAC	701					
Query	121	GGCAACTTATTGCA	AAGATTTACTCGGTAAGCA	AGCAATAATGGCCGTAAGTGTG	TGAGTG	180					
Sbjct	702	GGCAACTTATTGCA	AAGATTTACTCGGTAAGCA	AGCAATAATGGCCGTAAGTGTG	TGAGTG	761					
Query	181	ATTGTGTACGTCCC	TCGATGCGGCCCCCAGTAT	TTGTTGACTGCCTCTGGTGGT	GACTGG	240					
Sbjct	762	ATTGTGTACGTCCC	TCGATGCGGCCCCCAGTAT	rttgttgactgcctctggtggt	GACTGG	821					
Query	241	GGGTTAAGTATCGG	ATTATCGAAAGAATGTGAC	CATGTCTTATACGGTTATGTGC	T 295						
Sbjct	822	GGGTTAAGTATCGG	ATTATCGAAAGAATGTGAC	CATGTCTTATACGGTTATGTGC	T 876						

Fig. (41): Pair wise alignment ITS-2 sequence of *Contracaecum* larva collected from *Luciobarbus esocinus*, Query is the study or sample sequence and Subject is the GenBank sequence.

<u>Down</u>	nload •	GenBank Gra	aphics			▼ <u>Next</u> ▲ <u>Previous</u> ≪ <u>Description</u>				
Contra gene, e	ontracaecum rudolphii isolate CrBG16 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA ene, complete sequence; and internal transcribed spacer 2, partial sequence									
Sequenc	e ID: FJ	1467620.1 Length:	:876 Number of Match	les: 1						
Range	1: 582	to 876 GenBank	Graphics		Vext Match	Previous Match				
Score 545 bit	s(295)	Expect 4e-151	Identities 295/295(100%)	Gaps 0/295(0%)	Strand Plus/Plus					
Juery	1	CGCTGGCACGTCTGG	CTGAGGGTCGAAATATTC	AATACTATCCGCACAATGCT	TCAGACG 60					
Sbjct	582	CGCTGGCACGTCTGG	CTGAGGGTCGAAATATTC	AATACTATCCGCACAATGCT	TCAGACG 641					
luery	61	AAGCGTGTGGTGCTT	TCGACAAGCAGTGTCCCT	TTGGGGCGCTCCTTGTTTGG	TTTGAAC 120					
bjct	642	AAGCGTGTGGTGCTT	TCGACAAGCAGTGTCCCT	TTGGGGCGCTCCTTGTTTGG	TTTGAAC 701					
luery	121	GGCAACTTATTGCAA	AGATTTACTCGGTAAGCA	GCAATAATGGCCGTAAGTGT	GTGAGTG 180					
bjct	702	GGCAACTTATTGCAA	AGATTTACTCGGTAAGCA	GCAATAATGGCCGTAAGTGT	GTGAGTG 761					
Query	181	ATTGTGTACGTCCCT	CGATGCGGCCCCCAGTAT	TTGTTGACTGCCTCTGGTGG	TGACTGG 240					
bjct	762	ATTGTGTACGTCCCT	CGATGCGGCCCCCAGTAT	TTGTTGACTGCCTCTGGTGG	TGACTGG 821					
luery	241	GGGTTAAGTATCGGA	TTATCGAAAGAATGTGAC	ATGTCTTATACGGTTATGTG	CT 295					
Shict	822	GGGTTAAGTATCGGA	TTATCGAAAGAATGTGAC	ATGTCTTATACGGTTATGTG	CT 876					

Fig. (42): Pair wise alignment ITS-2 sequence of *Contracaecum* larva collected from *Luciobarbus xanthopterus*, Query is the study or sample sequence and Subject is the GenBank sequence.

bowr	nload •	✓ <u>GenBank</u> G	<u>iraphics</u>			▼ <u>Next</u> ▲ <u>Previous</u> ≪ <u>Descriptions</u>					
Contra	ontracaecum rudolphii isolate CrBG16 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA										
gene,	comp	lete sequence;	and internal transcr	ribed spacer 2, partia	l sequen	ice					
Sequend	ce ID: F	<u>J467620.1</u> Lengt	th: 876 Number of Match	ies: 1							
Range	1: 582	to 876 GenBank	Graphics		Vext N	Match A Previous Match					
Score 545 bit	:s(295)	Expect) 4e-151	Identities 295/295(100%)	Gaps 0/295(0%)	Strand Plus/Plu	S					
Query	1	CGCTGGCACGTCTC	GCTGAGGGTCGAAATATTC	AATACTATCCGCACAATGCT	TCAGACG	60					
Sbjct	582	CGCTGGCACGTCTC	3GCTGAGGGTCGAAATATTC	AATACTATCCGCACAATGCT	TCAGACG	641					
Query	61	AAGCGTGTGGTGCT	TTCGACAAGCAGTGTCCCT	TTGGGGCGCTCCTTGTTTGG	TTTGAAC	120					
Sbjct	642	AAGCGTGTGGTGCT	rttcgacaagcagtgtccct	TTGGGGCGCTCCTTGTTTGG	TTTGAAC	701					
Query	121	GGCAACTTATTGCA	AAGATTTACTCGGTAAGCA	GCAATAATGGCCGTAAGTGT	GTGAGTG	180					
Sbjct	702	GGCAACTTATTGCA	AAGATTTACTCGGTAAGCA	dcaataatggccgtaagtgt	GTGAGTG	761					
Query	181	ATTGTGTACGTCCC	TCGATGCGGCCCCCAGTAT	TTGTTGACTGCCTCTGGTGG	TGACTGG	240					
Sbjct	762	ATTGTGTACGTCCC	TCGATGCGGCCCCCAGTAT	ttetteactecctcteetee	TGACTGG	821					
Query	241	GGGTTAAGTATCGG	SATTATCGAAAGAATGTGAC	ATGTCTTATACGGTTATGTG	CT 295						
Sbjct	822	GGGTTAAGTATCGC	SATTATCGAAAGAATGTGAC	ATGTCTTATACGGTTATGTG	CT 876						

Fig. (43): Pair wise alignment ITS-2 sequence of *Contracaecum* larva collected from *Mastacembelus mastacembelus*, Query is the study or sample sequence and Subject is the GenBank sequence.

L Dowr	nload	 GenBank Gr 	aphics			▼ Next ▲ Previous ≪ Descriptions				
Contra	caec	um rudolphii iso	late B from Italy	cvtochrome oxida	se subunit II	(COII) gene, partial cds:				
mitoch	nitochondrial									
Sequend	ce ID: E	F122203.1 Length	n: 519 Number of Ma	tches: 1						
See	1 more	e title(s) 🗸								
Range	1: 1 to	472 GenBank Gra	aphics		▼ <u>Next M</u>	fatch 🔺 Previous Match				
Score	-/ 451	Expect	Identities	Gaps	Strand					
833 DI	5(451)		465/472(99%)	0/4/2(0%)						
Query	4					63				
Ouopy	61				CCCTCCCCAAA	415				
Shict	412					353				
Ouerv	124	GCTCAAGAGTGGATA	ACATCACCCGAAGTAA	TACAAAAACGAATATTAG	TATCACAAGGA	183				
Sbjct	352	GCTCAAGAGTGGATA	ACATCACCCGAAGTGA	TACAAAAACGAATATTAG	TATCACAAGGA	293				
Query	184	ACAACACAACGATTA	TCAACCTCCAAAAGAC	GGGGCTCCCCCAACTCCA	ACTGGTCTAAA	243				
Sbjct	292	ACAACACAACGATTA	TCAACCTCCAAAAGAC	GGGGCTCCCCCAACTCCA	ACTGGTCTAAA	233				
Query	244	GACTTCATATAAGAA	TCAAACTCCAAACCGG	GGATATCTCTAAACTCAT	AACTTCAATAC	303				
Sbjct	232	GACTTCATATAAGAA	TCAAACTCCAAACCGG	GGATATCTCTAAACTCAT	AACTTCAATAC	173				
Query	304	CATTGATGACCAGTA	ACCTTCACAGTTAAAC	TGCTATCAAGGTTTATTA	AACCATAATAA	363				
Sbjct	172	CATTGATGACCAGTA	ACCTTCACAGTTAAAC	TACTATCAAGGTTTATTA	AACCATAATAA	113				
Query	364	TAAAGCAGACTCAAA	GAAGGGATCATTTGTA	TAACCAAAATCAAAGTTG	GGAAAACACTA	423				
Sbjct	112	TAAAGCAGACTCAAA	GAAGGGATCATTTGTA	TAACCAAAATCAAAGTTG	GGAAAACACTA	53				
Query	424	CACAAAAGTTCTCCA	AATTGATACTCAATCT	TCTTACTTTtaaaataaa	aac 475					
Sbjct	52	CACAAAAGTTCTCCA	AATTGATACTCAATCT	ΤΟΤΤΑĊŤŤŤĂĂĂĂĂĂĂĂ	AAC 1					

Fig. (44): Pair wise alignment COX-2 sequence of *Contracaecum* larva collected from *Acanthobrama marmid*, Query is the study or sample sequence and Subject is the GenBank sequence.

Fig. (45): Pair wise alignment COX-2 sequence of *Contracaecum* larva collected from *Arabibarbus grypus*, Query is the study or sample sequence and Subject is the GenBank sequence.

Fig. (46): Pair wise alignment COX-2 sequence of *Contracaecum* larva collected from *Capoeta trutta*, Query is the study or sample sequence and Subject is the GenBank sequence.

La Dow	nload	✓ GenBank Gra	aphics			▼ <u>Next</u> ▲ <u>Previous</u> ≪ <u>Descriptions</u>				
Contra	acaec	um rudolphii voi	ucher DSSP-CRB6	cytochrome oxid	ase subunit II	(COII) gene, partial cds; mitochondrial				
Sequen	Sequence ID: <u>EF558894.1</u> Length: 519 Number of Matches: 1									
266	see 2 more title(s) *									
Range	Range 1: 3 to 475 GenBank Graphics Next Match Previous Match									
Score 869 bit	ts(470)	Expect	Identities 472/473(99%)	Gaps 0/473(0%)	Strand Plus/Minus					
Query	1	CTGTGGTTAGCACCA	CAAATTTCCGAGCATTG	GCCGTAAAAAACTCCTA	CAATAGGAAAA	60				
Sbjct	475	CTGTGGTTAGCACCA	CAAATTTCCGAGCATTG	GCCGTAAAAAACTCCTA	CAATAGGAAAA	416				
Query	61	CTATAAGATAAAGTC	CTAAGAATACCACTTAT	AGCATCCAGTTTAATAG	AAAGCCTAGGC	120				
Sbjct	415	ĊŤĂŤĂĂĠĂŤĂĂĂĠŤĊ	CTAAGAATACCACTTAT	AGCATCCAGTTTAATAG	AAAGCCTAGGC	356				
Query	121	AAAGCTCAAGAGTGG	ATAACATCACCCGAGGT	AATACAAAAACGAATG1		180				
Sbjct	191	AAAGCTCAAGAGTGG			TAGTATCACAA	296				
Shict	295					236				
Query	241	AAAGACTTCATATAA	GAATCAAACTCCAAACC	GGGGATATCCCTAAACT	САТААСТТСАА	300				
Sbjct	235	AAAGACTTCATATAA	GAATCAAACTCCAAACC	GGGATATCCCTAAACT	CATAACTTCAA	176				
Query	301	TACCATTGATGACCA	GTAACCTTCACAGTTAA	ACTACTATCAAGGTTTA	ТТАААССАТАА	360				
Sbjct	175	TACCATTGATGACCA	GTAACCTTCACAGTTAA	ACTACTATCAAGGTTTA	ТТАААССАТАА	116				
Query	361	TAATAAAGCAGACTC	AAAGAAGGGATCATTTG	ТАТААССААААТСААА	TTGGGAAAACA	420				
Sbjct	115	TAATAAAGCAGACTC	AAAGAAGGGATCATTG	TATAACCAAAATCAAA	TTGGGAAAACA	56				
Query	421	CTACACAAAAGTTCT	CCAAATTGATACTCAAT	CTTCTTACTTTtaaaat	aaaa 473					
Sbjct	55	CTACACAAAAGTTCT	CCAAATTGATACTCAAT	CTTCTTACTTTTAAAAT	AAAA 3					

Fig. (47): Pair wise alignment COX-2 sequence of *Contracaecum* larva collected from *Carasobarbus luteus*, Query is the study or sample sequence and Subject is the GenBank sequence.

bownload ✓ GenBank Graphics ✓ Next ▲ Previous ≪Descriptions										
Contra	caecu	um rudolphii cl	lone 4 cytochrom	e oxidase II (COII) ge	ne, partial o	ds; mi	tochondrial			
Sequence ID: EF513509.1 Length: 519 Number of Matches: 1										
Range 1: 1 to 475 GenBank Graphics Next Match Previous Match										
Score 878 bits	s <mark>(475</mark>)	Expect 0.0	Identities 475/475(100%)	Gaps 0/475(0%)	Strand Plus/Minus	;				
Query	1	CTGTGGTTAGCACO	ACAAATTTCCGAGCAT	TGGCCGTAAAAAACTCCTAC	AATAGGAAAA	60				
Sbjct	475	CTGTGGTTAGCACC	CACAAATTTCCGAGCAT	TGGCCGTAAAAAACTCCTAC	AATAGGAAAA	416				
Query	61	CTATAAGATAAAGT	CCTAAGAATACCACTT	ATAGCATCCAGTTTAATAGA	AAGCCTGGGC	120				
Sbjct	415	CTATAAGATAAAGT	ICCTAAGAATACCACTT	ATAGCATCCAGTTTAATAGA	AAGCCTGGGC	356				
Query	121	AAAGCTCAAGAGTG	GATAACATCACCCGAG	GTAATACAAAAACGAATGTT	AGTATCACAA	180				
Sbjct	355	AAAGCTCAAGAGTC	GATAACATCACCCGAG	GTAATACAAAAACGAATGTT	AGTATCACAA	296				
Query	181	GGAACAACACAACG	GATTATCAACCTCCAAA	AGACGGGGGCTCCCCCAACTC	CAACTGGTCT	240				
Sbjct	295	ĠĠĂĂĊĂĂĊĂĊĂĊŎ	GATTATCAACCTCCAAA	AGACGGGGGCTCCCCCAACTC	CAACTGGTCT	236				
Query	241	AAAGACTTCATATA	AGAATCAAACTCCAAA		ΑΤΑΑCΤΤCΑΑ	300				
Sbjct	235	AAAGACTTCATATA	AGAATCAAACTCCAAA	CCGGGGATATCCCTAAACTC	ATAACTTCAA	176				
Query	301	TACCATTGATGACO		AAACTACTATCAAGGTTTAT		360				
Sbjct	175	TACCATTGATGACC	CAGTGACCTTCACAGTT	AAACTACTATCAAGGTTTAT	TAAACCATAA	116				
Query	361	TAATAAAGCAGACT	CAAAGAAGGGATCATT	TGTATAACCAAAATCAAAGT	TGGGAAAACA	420				
Sbjct	115	TAATAAAGCAGACI	rcaaagaagggatcatt	TGTATAACCAAAATCAAAGT	TGGGAAAACA	56				
Query	421	CTACACAAAAGTTO	CTCCAAATTGATACTCA	ATCTTCTTACTTTtaaaata 	aaaac 475					
Sbjct	55	CTACACAAAAGTTC	CTCCAAATTGATACTCA	ατςττςττάςτττταλάλτά.	AAAAC 1					

Fig. (48): Pair wise alignment COX-2 sequence of *Contracaecum* larva collected from *Chondrostoma regium*, Query is the study or sample sequence and Subject is the GenBank sequence.
🕹 Dowi	nload	✓ GenBank G	raphics			▼ Next ▲ Previous
Contra	acaec	um rudolphii vo	oucher DSSP-CRB	6 cytochrome oxid	ase subunit II	I (COII) gene, partial cds; mitochondrial
Sequen	ce ID: E	F558894.1 Lengt	h: 519 Number of M	atches: 1		
See	2 more	e title(s) 🛩				
Range	1: 1 to	475 GenBank G	raphics		V Next M	Match A Previous Match
Score 872 bit	s(472	Expect	Identities 474/475(99%)	Gaps 0/475(0%)	Strand Plus/Minus	
Query	1	CTGTGGTTAGCACC	ACAAATTTCCGAGCAT	ТӨӨССӨТААААААСТССТ	ACAATAGGAAAA	60
Sbjct	475	CTGTGGTTAGCACC	ACAAATTTCCGAGCAT	TGGCCGTAAAAAACTCCT	ACAATAGGAAAA	416
Query	61	CTATAAGATAAAGT	CCTAAGAATACCACTT	ATAGCATCCAGTTTAATA	GAAAGCCTAGGC	120
Sbjct	415	CTATAAGATAAAGT	CCTAAGAATACCACTT	ATAGCATCCAGTTTAATA	SAAAGCCTAGGC	356
Query	121	AAAGCTCAAGAGTG	GATAACATCACCCGAG	GTAATACAAAAACGAATG	TTAGTATCACAA	180
Sbjct	355	AAAGCTCAAGAGTG	GATAACATCACCCGAG	GTAATACAAAAACGAATG	TTAGTATCACAA	296
Query	181	GGAACAACACAACG		AGACGGGGCTCCCCCAAC		240
Sbjct	295					236
Sbict	235					176
Query	301	TACCATTGATGACC	AGTAACCTTCACAGTT	AAACTACTATCAAGGTTT	ATTAAACCATAA	360
Sbjct	175	TACCATTGATGACC	AGTAACCTTCACAGTT	AAACTACTATCAAGGTTT	ATTAAACCATAA	116
Query	361	TAATAAAGCAGACT	CAAAGAAGGAATCATT	TGTATAACCAAAATCAAA	GTTGGGAAAACA	420
Sbjct	115	TAATAAAGCAGACT	CAAAGAAGGGATCATT	тотатаассаааатсааа	GTTGGGAAAACA	56
Query	421	CTACACAAAAGTTC	TCCAAATTGATACTCA	ATCTTCTTACTTTtaaaa	taaaaac 475	
Sbjct	55	CTACACAAAAGTTC	tccaaattgatactca	ATCTTCTTACTTTTAAAA	TAAAAAC 1	

Fig. (49): Pair wise alignment COX-2 sequence of *Contracaecum* larva collected from *Cyprinus carpio*, Query is the study or sample sequence and Subject is the GenBank sequence.

🛃 Dowr	load	✓ GenBank	Graphics			,	▼ Next ▲ Previ	ous «Descript	ions
Contra	caec	um rudolphii d	lone 4 cytochrome	oxidase II (COII) gei	ne, nartial c	ds' mite	chondrial		
Sequend	e ID: E	F513509.1 Len	gth: 519 Number of M	atches: 1	, par ciar e	,			
Danas		ATE ConBank	Craphics		T blout bi	latch i Di	rousious Match		
Range	1: 1 to	475 Genbank	<u>Graphics</u>		V Next W				
878 bit	s(475)) 0.0	1dentities 475/475(100%)	Gaps 0/475(0%)	Strand Plus/Minus	;			
Query	1	CTGTGGTTAGCAC	CACAAATTTCCGAGCATT	GGCCGTAAAAAACTCCTAC	ATAGGAAAA	60			
Sbjct	475	CTGTGGTTAGCAC	CACAAATTTCCGAGCATT	GGCCGTAAAAAACTCCTACA	AATAGGAAAA	416			
Query	61	CTATAAGATAAAG	ТССТААБААТАССАСТТА	TAGCATCCAGTTTAATAGA	AAGCCTGGGC	120			
Sbjct	415	CTATAAGATAAAG	TCCTAAGAATACCACTTA	TAGCATCCAGTTTAATAGA	AAGCCTGGGC	356			
Query	121	AAAGCTCAAGAGT	GGATAACATCACCCGAGG	TAATACAAAAACGAATGTT	AGTATCACAA	180			
Sbjct	355	AAAGCTCAAGAGT	GGATAACATCACCCGAG	TAATACAAAAACGAATGTT	AGTATCACAA	296			
Query	181	GGAACAACACAAC	GATTATCAACCTCCAAAA	GACGGGGCTCCCCCAACTC	CAACTGGTCT	240			
Sbjct	295	GGAACAACACAAC	GATTATCAACCTCCAAA	GACGGGGCTCCCCCAACTC	CAACTGGTCT	236			
Query	241	AAAGACTTCATAT	AAGAATCAAACTCCAAAC	CGGGGATATCCCTAAACTC	ATAACTTCAA	300			
Sbjct	235	AAAGACTTCATAT	AAGAATCAAACTCCAAAC	CGGGGGATATCCCTAAACTC	ATAACTTCAA	176			
Query	301	TACCATTGATGAC	CAGTGACCTTCACAGTTA	AACTACTATCAAGGTTTAT	ΓΑΑΑCCATAA	360			
Sbjct	175	TACCATTGATGAC	CAGTGACCTTCACAGTTA	AACTACTATCAAGGTTTAT	ТАААССАТАА	116			
Query	361	TAATAAAGCAGAC	TCAAAGAAGGGATCATT	GTATAACCAAAATCAAAGT	TGGGAAAACA	420			
Sbjct	115	TAATAAAGCAGAC	TCAAAGAAGGGATCATT	GTATAACCAAAATCAAAGT	TGGGAAAACA	56			
Query	421	CTACACAAAAGTT	CTCCAAATTGATACTCAA	TCTTCTTACTTTtaaaataa	aaaac 475				
Sbjct	55	CTACACAAAAGTT	ctccaaattgatactca	téttéttaéttttaáaata.	AAAAC 1				

Fig. (50): Pair wise alignment COX-2 sequence of *Contracaecum* larva collected from *Luciobarbus barbulus*, Query is the study or sample sequence and Subject is the GenBank sequence.

Contro		um rudalnhii dana 4 sutashrama avidasa II (COII) zana nartial sa	er mite chendriel
Contra	caec	um rudolphil clone 4 cytochrome oxidase il (COII) gene, partial ca	s; mitochondriat
sequend	e ID:	F515509.1 Length: 519 Number of Matches: 1	
Range	1: 1 to	475 GenBank Graphics Vext Mat	ch 🔺 Previous Match
Score 861 bit	s(466	Expect Identities Gaps Strand 0.0 472/475(99%) 0/475(0%) Plus/Minus	
Query	1	CTGTGGTTAGCACCACAAATTTCCGAGCATTGGCCGTAAAAAACTCCTACAATAGGAAAA 6	0
Sbjct	475	CTGTGGTTAGCACCACAAATTTCCGAGCATTGGCCGTAAAAAAACTCCTACAATAGGAAAA 4	16
Query	61	CTATAAGATAAAGTCCTAAGAATACCACTTATAGCATCCAGTTTAATAGAAAGCCTAGGC 1	20
Sbjct	415	CTATAAGATAAAGTCCTAAGAATACCACTTATAGCATCCAGTTTAATAGAAAGCCTGGGC 3	56
Query	121	AAAGCTCAAGAGTGGATAACATCGCCCGAGGTAATACAAAAACGAATGTTAGTATCACAA 1	80
Sbjct	355	AAAGCTCAAGAGTGGATAACATCACCCGAGGTAATACAAAAACGAATGTTAGTATCACAA 2	96
Query	181	GGAACAACACAACGATTATCAACCTCCAAAAGACGGGGCTCCCCCAACTGGTCT 2	40
Sbjct	295	GGAACAACACAACGATTATCAACCTCCAAAAGACGGGGCTCCCCCAACTCCAACtGGTCT 2	36
Query	241	AAAGACTTCATATAAGAATCAAACTCCAAACCGGGGATATCCCTAAACTCATAACTTCAA 3	00
Sbjct	235	ΑΑΑGACTTCATATAAGAATCAAACTCCAAACCGGGGATATCCCTAAAĊŤĊĂŤĂĂĊŤŤĊĂĂ 1	76
Query	301	TACCATTGATGACCAGTGACCTTCACAGTTAAACTACTACTATCAAGGTTTATTAAACCATAA 3	60
Sbjct	175	TACCATTGATGACCAGTGACCTTCACAGTTAAACTACTACTATCAAGGTTTATTAAACCATAA 1	16
Query	361	TAA TAAAGCAGAC I CAAAGAAGGAATCA TI TGTATAACCAAAATCAAAGTTGGGAAAACA 4	20
Sbjct	115		b
Query	421		

Fig. (51): Pair wise alignment COX-2 sequence of *Contracaecum* larva collected from *Luciobarbus esocinus*, Query is the study or sample sequence and Subject is the GenBank sequence.

Fig. (52): Pair wise alignment COX-2 sequence of *Contracaecum* larva collected from *Luciobarbus xanthopterus*, Query is the study or sample sequence and Subject is the GenBank sequence.

Fig. (53): Pair wise alignment COX-2 sequence of *Contracaecum* larva collected from *Mactacembelus mastacembelus*, Query is the study or sample sequence and Subject is the GenBank sequence.

الخلاصة

خلال الدراسة الحالية، تم أخذ عينات عشوائية من الأسماك من 26 منطقة أغلبها من روافد نهر الزاب الصغير ونهر سيروان في محافظة السليمانية، إقليم كوردستان- العراق. حيث تمّ جمع 2122 سمكة، تابعة إلى 36 نوعاً، 26 أجناس وثمانية عوائل، خلال الفترة المحصورة بين شهر كانون الثاني وحتى نهاية شهر كانون الأول 2018. تم فحص الأسماك للكشف عن يرقات الديدان الخيطية من جنس كونتراسيكام (Contracaecum) المتطفيلة عليها.

أظهرت الدراسة أن العائلة الأكثر تنوعاً كانت Cyprinidae بواقع 14 نوعاً (38.88٪) تليها Leuciscidae بواقع ثمانية انواع (22.22٪)، تليها Nemacheilidae بواقع ستة انواع (16.66٪)، ثم Heteropneustidae ،Bagridae من واحداً لكل من Kenocyprididae ،Heteropneustidae ،Bagridae بنسبة (2.77٪). و Siluridae ،Mugilidae ،Mastacembelidae بنسبة (2.77٪).

كشفت الدراسة الحالية أن اكثر الأنواع انتشاراً كانت سمكة البني كبير الفم (Cyprinion) كشفت الدراسة الحالية أن اكثر الأنواع انتشاراً كانت سمكة البني كبير الفم (macrostomum) بنسبة 10.46 ٪، ثم الكارب (macrostomum) بنسبة 10.46 ٪، ثم الكارب الأعتيادي (Cyprinus carpio) في المرتبة الثالثة (9.18 ٪). بينما كانت أقل الأسماك انتشاراً سمكة الشلق (Leuciscus vorax) (Leuciscus vorax)

تمّ تسجيل سمكة Alburnoides velioglui لأول مرة في العراق. وتمّ إجراء التوصيف المورفومتري والجذري لهذه الأسماك باستخدام السيتوكروم-ج أوكسيديز الميتوكوندريا الوحدة الفرعية (COX-1) كعلامة الباركود الحمض النووي لتوضيح الوضع التصنيفي لهذه السمكة. التوصيف الوراثي لـ A. velioglui م في الدراسة الحالية موجودة في قاعدة بيانات GenBank تحت رقم الانضمام (MN893770).

لقد تمّ جمع اليرقات من جنس Contracaecum (n=140) من 30 سمكة مصابة تعود إلى 10 أنواع مختلفة من الأسماك (السّمنان Acanthobrama marmid، الشبوط الأعتيادي Arabibarbus grypus، الشبوط الأعتيادي Acanthobrama marmid، تيلة المرقطة Carasobarbus الحمري Carasobarbus luteus، البلّوط الملوكي Chondrostoma تيلة المرقطة Luciobarbus barbuls، الو براطم Luciobarbus barbuls، البزّ . بالكرب الأعتيادي L. xanthopterus مالكر و المرمريج Mastacembelus mastacembelus) وبنسبة الأصابة 35%، 0.80%، 0.90%، 4.49%، 5.76%، 20.0%، 20.0%، 1.92%، 1.92%، 2.05%، 2 تمّت الدراسة الشكل الخارجي لهذه اليرقات بواسطة المجهر الضوئي والمجهر الإلكتروني الماسح (Scanning electron microscope). بالإضافة إلى ذلك، أجريت دراسة التحليلات الجزيئية عن طريق المتضخيم والتسلسل ومقارنة مواقع جينية مختلفة (ITS-1، 2-ITS و 2-COX) لمختلف يرقات (COX و 2-COX) لمختلف يرقات *Contracaecum* المعزولة. وهذه التسلسلات الجينية تم مقارنتها ايضاً مع تسلسلات أنواع من الديدان الخيطية القريبة في قاعدة البيانات الجينية (GenBank). تم الحصول على ثلاثين تسلسلات أنواع من الديدان جمعها. تم تضخيم 1-Cox و 2-COX و دهذه التسلسلات الجينية تم مقارنتها ايضاً مع تسلسلات أنواع من الديدان الخيطية القريبة في قاعدة البيانات الجينية (GenBank). تم الحصول على ثلاثين تسلسلات أنواع من الديدان جمعها. تم تضخيم 1-S-2 و 1-S-2 و COX عن طريق تفاعل سلسلة البلمرة (reaction charce reaction) وتسلسلها. وكشفت أن عينات يرقات *Contracaecum الذي تم حميها. تم جمعها من عشر*ة أنواع الأسماك جمعها. تم تضخيم واحد وهو *Cox و 2-COX عن طريق تفاعل سلسلة البلمر*ة (reaction reaction) وتسلسلها. وكشفت أن عينات يرقات *Contracaecum الذي تم جمعها من عشر*ة أنواع الأسماك جمعها. تم تصخيم 1-S-2 و 1-S-2 و 1-S-2 من طريق تفاعل سلسلة البلمرة (reaction) وتسلساك العاد وكشفت أن عينات يرقات *Contracaecum الذي تم جمعها من عشر*ة أنواع الأسماك راحود لنوع واحد و هو *Cox و 2-COX من طريق تفاعل سلسلة البلمر*ة (reaction) وتسلسلك و واحد و هو reaction rudolphii التي تم جمعها من عشرة أنواع الأسماك الحينات. وقد تم وصف التحليل الوراثي للنمط الوراثي. التوصيف الوراثي لهذه البريقات في هذه الدراسة متاحود لنوع واحد و في قاعدة بيانات بنك الجينات. تم إيداع تسلسلات 1-S-17، 2-S-17 و 2-SOX التي تم الحصول عليها مراحة في قاعدة بيانات بنك الجينيان وأظهرت أرقام انضمامها.

التركيب المظهري - الدقيق والتوصيف الجزيئي ليرقات Contracaecum (الخيطيات) المتطفلة على بعض الأسماك في محافظة السليمانية، أقليم كور دستان - العراق

جماد الأول, ١٤٤٢ (هجري) ١٤٤٢ \٥/٢

کانون الأول, ۲۰۲۰(میلادي) ۲۰۲۰/۱۲

پوخته

لەماوەى ئەنجامدامى ئەم تويزثينەوەيە، نموونەى ماسيەكانى پاريزگاى سليمانى وەگيران لە 26 شوينى جياواز لەو ئاوانەى كە دەچنەوە سەر ھەردوو رووبارى زينى بجوك و رووبارى سيروان لە ھەريمى كوردستانى عيراق. كۆى 2122 ماسى ئاوى سازگار كۆكرانەوە، كە بۆ 36 جۆر دەگەريتەوە لە 26 رەگەزى ماسى كەسەر بە 10 خيزانى ماسىيەكانن، وە پشكنينيان بۆكرا بۆ ھەبوونى كرمۆكەى كرمى دەزوويى مشەخۆر لە جۆرى كۆنتراسيكەم (Contracaecum) لە ماوەى نيوان مانگى كانونى دووەم تا كۆتايى مانگى كانوونى يەكەمى 2018.

توێژینهوهکه دهرخستووه که زوّرترین خیّزانی ماسی که بلاّوه لهم پاریّزگایهدا بریتیه له خیّزانی ماسییه شهبوتیهکان (Cyprinidae) که 14 جوّر ماسی لهخوّدهگریّت به ریّژهی 38.88٪، پاشان خیّزانی قه شاش (Leuciscidae) دیّت که 8 جوّر ماسی لهخوّدهگریّت به ریّژهی 22.22٪، پاش ئهوانیش خیّزانی مارمیّلکه ماسییهکان (Leuciscidae) دیّت که 6 جوّر ماسی لهخوّ دهکریّت به ریّژهی 16.66٪، پاشان خیّزانی شهبوتیه ماسییهکان (Nemacheilidae) دیّت که 6 جوّر ماسی لهخوّ دهکریّت به ریّژهی 16.66٪، پاشان خیّزانی شهبوتیه ماسییهکان (Meteropneustidae) دیّت که دوو جوّر ماسی لهخوّدهگریّت به ریّژهی 5.55٪، پاشان خیّزانی زیکه (Bagridae)، نقهی پیّوهدهر (Heteropneustidae)، مارماسی (Mastacembeliade)، زبره ههریهکهیان به ریّژهی 2.77٪.

ئەم ليكۆلينەوەيە زۆرترين و بلاوترين جۆرى ماسى لەم پاريزگايە دەستنيشان كردووە كە ئەويش ماسييە پانكەيە (Cyprinion macrostomum) بە ريزەى 15.17٪، پاشان ماسى مشارەيە (Capoeta trutta) بە ريزەى 10.46٪، پاشان لەسەر ئاسىتى سييەم ماسى كارپى ئاسايى (Cyprinus carpio) ديت بە ريزەى 9.18٪. ئەوەش روون بۆتەوە كە دەگمەنترين ماسى لەجۆرى ماسى قەشاش (Leuciscus vorax) بوو بە ريزەي 0.047٪.

لەم بەدواداچوونە زانستيەدا ماسيەكى تازە بەديكرا كە يەكەم جارە تۆماربكرين لەسەر ئاستى عيّراق كە ئەويش ماسى ئەلبورنۆيدس ۋىليۆگلويە (*Alburnoides velioglui*). ليكۆلىنەوە لە سيفاتى روكەشى و پيۆانەييەكانى بۆ ئەنجامدرا. ھەروەھا ليكۆلىنەوەى بۆھىلاى مايتۆكۆندرياى (COX-1) بۆ ئەجامدرا بەمەبەستى پۆلىنكردنەكەى. سيفاتە بۆھىلايەكەى ئەم ماسىيە لە بانكى بۆھىلا بەردەستە لەۋىر ژمارەى تۆمارى بانكى MN893770 .

كرمۆكەى كرمى دەزوويى لە رەگەزى كۆنتراسىكەم (140 دانە) كۆكرانەوە لە 30 ماسى توشبوو كە دەگەرىينەوە بۆ 10 جۆرى جياواز لە ماسىيەكان ئەوانىش (تەنكە ماسى Acanthobrama marmid، سورە Acanthobrama مىسى 10 بۆ 10 مىلى بورە Chondrostoma، مىلارە Carasobarbus luteus، خرە سورە Carasobarbus luteus، كلك رەشە Chondrostoma، سمىلارە regium، كارب ئاسايى Cyprinus carpio، لوتوو Luciobarbus barbuls، بزە Luciobarbus، سمىلا L. xanthopterus و مارماسی Mastacembelus mastacembelus). ئەم تويٚژينەوەيە ريٚژەى توشبووان بە مشەخۆرى كرمۆكەى كۆنتراسىكەم 35٪، 0.81٪، 0.90٪، 4.49٪، 5.76٪، 2.05٪، 0.92٪، 1.92٪، 1.92٪ 19.35٪ وە 1.06٪ دەرخست لە ماسىيەكان يەك بەدواى يەك.

ليَكوَلِينهوه له شيّوهى كرمۆكەكان كرا به هۆى وردبينى ئاسايى (Optical microscope) و ووردبينى ئەلكترۆنى رووكەشى (Scanning electron microscope). لەگەل ئەوەشدا ليّكۆلينەوەى گەردى بۆهيّلى بۆ كرمۆكەكان ئەنجامدرا به زيادكردن و خويّندنەوەى زنجيرەى نيوكلۆتايدەكان و بەراووردكردنى چەند شويّنيّكى دياريكراوى بۆهيّلەكان (ITS-1، 2-ITS وە 2-COX) بۆ ھەر كرمۆكەيەك لە ھەر ماسييەكى توشبوو. لەم تويژينەوەيەدا 30 زنجيرەى بۆهيّلى لە كرمۆكە كۆكراوەكان دەستكەوت. بۆهيّلەكانى ITS-2، ITS، 2-SII وە 2-COX زيادكرانەوە بە كارليّكى پەلمەريّنى زنجيرەيى (PCR) پاشان خويّندنەوەى زنجيرەى نيوكلۆتايدەكانى بۆكرا. وە زيادكرانەوە بە كارليّكى پەلمەريّنى زنجيرەيى (PCR) پاشان خويّندنەوەى زنجيرەى نيوكلۆتايدەكانى بۆكرا. وە دەركەوت كە كرمۆكە كۆكراوەكان لەھەر 10 جۆر ماسىيەكاندا دەگەريّنەوە بۆ يەك جۆر كە ئەويش كۆنتراسيكەم رۆدۆلفى Bيە (BeneBank)، بە پشت بەستن بە ريژەى لەيەكچوون لە ئامارى زانيارى بانكى بۆھيلىي. سيفاتە بۆھيلەكانى ئەم مشەخۆرە كە ليكۆلينەوەى لەسەركراوە لە بانكى بۆھيلى (BeneBank)) بەردەستە،

پێکھاتەی شێوەیی۔ وردو خەسڵەتی گەردی کرمۆکەکانی (دەزوولەييەکان) مشەخۆر لەسەر ھەندێک جۆری ماسی له پارێزگای سلێمانی، ھەرێمی کوردستان-عێراق

کانونی یهکهم، ۲۰۲۰ (زاینی) ۲۰۲۰/۱۲/۱۷ سەرماوەز، ۲۷۲۰ (كوردى) ۲۲\٩\۲٦