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Abstract

Background: Acute lymphoblastic leukemia (ALL) is the most widely diagnosed

pediatric cancer. It is caused by the rapid proliferation of immature lymphoid in the

blood, bone marrow, and other tissues. In a five-year survival rate, more than 80% of

pediatric patients are cured. Despite high survival rates, sensitive and specific molecular

biomarkers are required for cancer diagnosis and prognosis, assignment of better risk

stratification, and therapeutic outcomes for childhood ALL. Human kallikrein related-

peptidases (KLKs) are a family of fifteen unique released serine proteases that

characterize the human genome's longest uninterrupted cluster located on chromosome

19. KLKs are present in a range of tissues and bodily fluids, where they influence

normal physiological function. The aberrant expression of various kallikrein-related

peptidases has been related to diverse diseases and cancers. The potential of kallikrein-

related peptidases in clinical oncology has been recognized. A very well-known

member of the KLK family with clinical relevance is the prostate-specific antigen

(PSA/KLK3) screening test. However, molecular analysis of other members of the KLK

family in hematological malignancies is new, and investigation into the involvement of

KLKs in cancer is currently ongoing.

Objectives: This research aimed to determine mRNA expression levels of KLK6,

KLK10, and KLK14 as potential biomarkers for diagnosis and/or prognosis of childhood

ALL, and to assess the effect of chemotherapy on their expression profile after one

month and three months of receiving chemotherapy.

Materials and Methods: This investigation was a prospective, analytical,

observational, and case-control study. The participants were children aged 1 to 15 years,

including 23 patients who were admitted to the Pediatric Department in Hiwa Cancer

Hospital, Sulaimaniyah, Kurdistan Region of Iraq, and they were newly diagnosed with

ALL. Also, healthy pediatric volunteers (n=12) were selected as the control group.

Blood samples were collected from leukemic patients at three different times: at

diagnosis with ALL, following one month, and three months of receiving

chemotherapy. Total RNA was extracted from blood samples, followed by cDNA
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synthesis, then mRNA expression levels of KLK6, KLK10, and KLK14 were analyzed

using quantitative real-time PCR (qRT-PCR).

Results: mRNA expression levels of KLK6, KLK10, and KLK14 in blood samples from

pediatric ALL patients were significantly downregulated compared to healthy blood

donors (p=0.002, p=0.0001, and p=0.0007 respectively). KLK6, KLK10, and KLK14

mRNA expression levels were significantly downregulated in ALL patients after one

month of receiving chemotherapy compared to their levels in normal blood samples

(p=0.0292, p˂0.0001, and p˂0.0001 respectively). The genes’ expression was also

significantly downregulated in ALL patients who received three months of

chemotherapy compared to their levels in normal blood samples (p=0.0038, p=0.0175,

and p˂0.0001 respectively). ROC curve analysis revealed the significant diagnostic

value of the KLK6, KLK10, and KLK14 expression to discriminate ALL patients from

normal counterparts (AUC=0.822, 95% CI=0.6735-0.9713, SE=0.076, p=0.0029),

(AUC=0.886, 95% CI=0.7720-1.000, SE=0.0582, p=0.0004), and (AUC=0.851, 95%

CI=0.7087-0.9931, SE=0.0726, p=0.0012) respectively. Univariate logistic regression

analysis demonstrated that the three genes could be used as prognostic biomarkers for

ALL (OR=0.2289, 95% CI=0.0557-0.9399, p=0.0115), (OR=0.0228, 95%

CI=0.0008851-0.2299, p ˂0.0001), and (OR=0.0716, 95% CI= 0.003912-0.4610,

p=0.0002) respectively. In ALL patients who received one-month chemotherapy,

KLK10 and KLK14 mRNA expression levels were downregulated compared to newly

diagnosed patients (p=0.4413 and p=0.0039 respectively), whereas KLK6 mRNA

expression was upregulated (p=0.4413). In ALL patients, KLK6 and KLK14 mRNA

expression were downregulated after three months of chemotherapy compared to their

level in the patients upon diagnosis (p=0.6794 and p=0.1336 respectively), while

KLK10 mRNA was upregulated (p=0.0602).

Conclusions: The present study revealed that KLK6, KLK10, and KLK14 mRNA

expression is significantly downregulated in pediatric ALL patients compared to the

control group, implying that it would have diagnostic relevance. Thus, KLK6, KLK10,

and KLK14 expressions at the mRNA level could be used as molecular biomarkers in

the diagnosis and prognosis of ALL.
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Chapter One: Introduction

1.1 Background of the study

Acute lymphoblastic leukemia (ALL) is the most universally diagnosed

pediatric malignancy (1). A standard-based clinical and laboratory analyses are

performed to understand clinical-pathological aspects of the disease and approach

to their diagnosis, treatment, and outline prognostic factors (2). The prevalence

of the use of conventional molecular biomarkers for diagnosis, prognosis, and

prediction of ALL in adults is four times surpassing compared to children (3).

There are also significant gaps in our understanding of various molecular

features of kallikrein functions. Human kallikrein related-peptidases (KLKs)

consist of a single family of fifteen homologous secreted serine proteases. They

are significant in regulating normal physiological functions and their

dysregulation is associated with the progression of diverse diseases and

malignancies (4).

Tumor biomarkers are biomolecules that can be used to detect the presence

of cancer, and/or provide information in patient management. They play a

substantial role in the diagnosis of malignancies, prognosis, and prediction of

treatment strategies (5). Cancer biomarkers could be nucleic acids, proteins, cells,

metabolites, or processes such as proliferation, angiogenesis, or apoptosis (6).
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Several kallikreins have been proposed as putative cancer biomarkers in

clinical oncology as relevant diagnostic, prognostic, and monitoring molecular

biomarkers in a range of human malignancies. The most well-known example is

the worldwide use of KLK3 or (Prostate-Specific Antigen, PSA) in the diagnosis

and monitoring of prostate cancer (7). The shortage of data on KLKs in

hematological malignancies provided the impetus for the current work. This study

put forth the hypothesis that there could be an association between kallikrein-

related peptidases and leukemia. The goal of the current study was to investigate

the possibility of using mRNA gene expression levels of KLK6, KLK10, and

KLK14 as diagnostic and/ or prognostic biomarkers for acute lymphoblastic

leukemia, and to assess the effect of chemotherapy on their expression profile

after one month and three months of receiving chemotherapy.

1.2Aim and objectives of the study

To address the hypothesis of the current study, the following objectives were

formulated:

 Perform quantitative measurement of mRNA gene expression levels of the

kallikrein-related peptidases: KLK6, KLK10, and KLK14 in newly diagnosed

childhood ALL patients and healthy control blood donors using the real-time

qPCR.



CHAPTER ONE INTRODUCTION

3

 Correlate the mRNA expression levels of the KLKs in newly diagnosed

childhood ALL patients and the continuous variables (age, lymphocyte count,

WBC, and serum LDH concentration).

 Assess the potential diagnostic values of the KLKs’ mRNA expression.

 Investigate the prognostic ability of the KLKs’ mRNA expression.

 Evaluate the KLKs’ mRNA expression levels of childhood ALL patients after

one month and three months of receiving chemotherapy.
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Chapter Two: Literature Review

2.1 Acute Lymphoblastic Leukemia (ALL)

Leukemias are defined as a group of malignant disorders that occur due to

abnormal and uncontrolled proliferation of leukocytes. Leukemias affect the

specialized hemopoietic tissue of the bone marrow and could affect peripheral

blood, lymphoid tissues, and spleen. Depending on the period the disease would

progress, leukemias are classified into acute or chronic (8). Mature cells in bone

marrow stem cells are generated through various steps of self-renewal,

maturation, and progressive differentiation. Immature, young, or primitive blast

cells will then form mature peripheral blood cells (9). Acute leukemias are caused

by an abnormal proliferation of the primitive cells and chronic leukemias are due

to malignancy of the mature and maturing cells.

Acute lymphoblastic leukemia (ALL) is a cancer of lymphoblasts, which

is composed of either B or T lineages. Approximately 85% of the ALL cases are

precursor B-cell ALLs, which typically manifest as pediatric acute leukemias.

Precursor T-cell ALLs are less common and tend to present more frequently in

adults (10). ALL is the commonest pediatric cancer. The childhood ALL cure rate

is more than 80% at five-year survival rates (11). However, less progress has been

achieved in the treatment of adults ALL.
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2.1.1 Epidemiology of ALL

ALL is the most common childhood malignancy. It represents 23% of

pediatric cancer cases. In the United States, 80% of diagnosed ALL cases are in

children (12). Infant ALL represents 2% to 3% of pediatric cases. The overall

incidence rate in both the United States and the Nordic countries is 3.9 per

100,000/year in people younger than 15 years (13). ALL incidence rates in

developed countries peak between the age of 2 to 5 years. The incidence of the

disease is almost three times as frequent in whites as compared to blacks. It is

slightly more common in males than in females; the male-to-female ratio is about

1.2 to 1.0 (14). With the exception, the frequency is slightly higher in female infants.

Exposure to depleted uranium, as well as massive use of chemical weapons by the

former Iraqi regime and recently by ISIS against Iraqi population, has been

connected to a rise in leukemia rates in several Iraqi cities (15). According to a local

study, the leukemia incidence rate per 100,000 pediatric age population was 3.57 in

boys, and 2.97 in girls (16).

2.1.2 Etiology and risk factors of ALL

It is considered that the etiology of acute leukemia is idiopathic.

Nevertheless, some factors have been examined as possible risk factors for the

disease including genetic, environmental, and infectious risk factors (8, 13, 17-

21). The genetic aspects include genetic abnormalities such as chromosome

aneuploidy and translocations. The environmental aspects include in utero
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exposure to ionizing radiation, maternal frequent exposure to pesticides, exposure

to benzene, and drugs such as alkylating agents. The infection aspects include

maternal infection during pregnancy which has been linked to an increased risk

of childhood leukemia.

2.1.3 Classifications of ALL

2.1.3.1 FAB morphologic classification of ALL

The French-American-British (FAB) morphologic classification was first

produced in 1976 (22). This classification relied on the morphological and

cytochemical microscopic appearance of leukemic cells. Three morphological

categories of lymphoblasts in ALL were defined namely L1, L2, and L3

established on their size, cytoplasm, nucleus, chromatin, basophilia, and

vacuolation. Generally, 85% of pediatric ALL diagnosed cases have L1

morphology, 14% have L2, and about 1% have L3. The FAB classification is

presented in (Figure 2.1) and (Table 2.1) (23, 24).

Figure 2.1. FAB morphologic appearance of blast cells in ALL.

This figure demonstrates FAB morphological classifications; aALL-L1: small and
homogenous blasts, bALL-L2: lymphoblasts of varying size, and cALL-L3: prominent
cytoplasmic vacuoles.

a
b c
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Table 2.1. FAB morphologic classification of blast cells in ALL.

Characteristics L1 morphology L2 morphology L3 morphology

Cell size Small in size,
uniform

Large, irregular
size

Large, regular
size

Nuclear shape Round and
regular nucleus

Irregular nucleus
outline

Round nucleus

Nuclear chromatin Homogeneous Heterogeneous,
condensed

Finely granular
stippled

Nucleoli Barely visible Prominent Prominent
Cytoplasmic amount Scanty Abundant Abundant
Cytoplasmic
basophilia

Intensity is
slight to
moderate

Variable Very deep

Cytoplasmic
vacuolation

Variable Variable Prominent

Special stains were used to identify the exact FAB group such as Periodic

Acid Schiff (PAS), Sudan Black B (SBB), and Myeloperoxidase (MPO). Blasts

in ALL cases cytochemically have negative results in both MPO and SBB

reactions and usually positive results in PAS reactions (25-27). It is difficult to

distinguish between B- and T-lineage ALL using morphological criteria, and

much more difficult to identify B-lineage lymphoblasts from normal B-lineage

lymphoid progenitors. (23).

2.1.3.2 Immunophenotype and cytochemical classification of ALL

Immunological markers are found on the surface, in the nuclei, and in the

cytoplasm of leukemic cells. The surface markers can be detected using

monoclonal antibodies conjugating with different fluorochromes. These cell

surface markers are called cluster designations which are expressed as the CD.
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Flow cytometry immunophenotyping is performed for the diagnosis and

prognosis of ALL which is an accurate technique for assigning a cell line to one

of the main cell lineages (28, 29). The European Group for the Immunological

Characterization of Leukemias (EGIL) proposed a guideline for the

immunological characterization of acute leukemias based on the idea that surface

and cytoplasmic antigens may be present and/or absent during lymphocyte

maturation. Then, the cell line and degree of differentiation of the leukemic

process can be detected according to antigen expression (30). Most childhood

ALL cases are developed as a result of the monoclonal proliferation of B-cell

precursors (80%), mature B-cell (5%), and T-cell ALL (15%) (31). According to

the bone marrow differentiation steps of normal B-cell progenitors, B-lineage

ALL was classified into Pro-B, common Pre-B, Pre-B, and B-cell ALL (29, 32,

33). T-lineage ALL was categorized using differentiation antigens that

corresponded to normal thymocyte differentiation levels, into Pre-T, T-

Intermediate, and Mature or Medullar ALL (29, 33).

2.1.3.3 Cytogenetic and molecular classification of ALL

The World Health Organization (WHO) categorized hematological

neoplasms in 2001, revised them in 2008, and then in 2016 (34, 35). The WHO

produced a standard based on clinical and laboratory data derived from different

methods including analysis of cell morphology, cytochemistry,

immunophenotyping, cytogenetic and molecular genetics to understand clinical-
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pathological aspects of diseases and approaches to their diagnosis, treatment, and

outline prognostic factors (2, 35).

Genetic abnormalities in B-cell ALL is significantly related to the

occurrence of specific chromosomal rearrangements involving hyperdiploidy

(51-65 chromosomes) (36), hypodiploidy (≤44 chromosomes) (37),

rearrangement of mixed-lineage leukemia (MLL) at 11q23 (38),

t(9;22)(q34;q11)/BCR-ABL1 (37), and t(12;21)(p13;q22)/TEL-AML (ETV6-

RUNX1) (38).

Genetic deregulations in T-cell ALL are mostly related to the abnormal

expression of normal transcription factor proteins. This is frequently a

consequence of chromosomal translocations that commonly involve the 14q11

juxtaposing promotor and enhancer constituents of T-cell receptor genes (39).

Frequent genomic features of T-ALL include TAL1 deregulation, LMO2

deregulation, NOTCH1 mutations, and MLL rearrangements (37).

2.1.4 Clinical features of ALL

The onset of the signs and symptoms of childhood acute leukemias are

mostly present within few weeks (40). The highly important clinical

manifestations are the following:
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2.1.4.1 Bone marrow failure

The bone marrow (BM) of children with ALL is extensively infiltrated by

blasts. The presentation includes the symptoms of fatigue, paleness, fever,

bleeding, bone pain, dyspnoea, angina, dizziness, weight loss, malaise, repeated

infections, petechiae, and bruising. Anemia, neutropenia, and thrombocytopenia

are often present in their CBC findings (9).

2.1.4.2 Neoplastic infiltration involvement

Lymphadenopathy, hepatomegaly, and splenomegaly are frequent and

commonly painless (10). Enlargement of the kidneys can be seen in 30-50% of

pediatric patients without having therapeutic and prognostic implications (9).

Also, in rare cases, enlargement of the pancreas has been reported as a result of

leukemic cells infiltrating the pancreas (41).

2.1.4.3 Central nervous system (CNS) manifestation

Meningeal spread may present with headaches, vomiting, and nerve

palsies. CNS leukemia can be detected by morphological examinations of

cerebrospinal fluid (CSF). Approximately 3-5% of ALL childhood patients show

signs of CNS leukemia at initial diagnosis and 30-40% of patients at relapse (42).

2.1.4.4 Skeletal manifestation

Infiltration of bone marrow may appear as bone pain that markedly affects

the long bones. This presents with a limp or refusal to walk. Bone tenderness is
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mostly observed. At ALL diagnosis up to 25% of pediatric patients have

radiographic abnormality osteopenia, and fractures are observed in 10% (43).

2.1.4.5 Genital system involvement

Painless testicular scrotum enlargement can be an indication of testicular

leukemia or hydrocele caused by lymphatic blockage (24). The involvement of

the uterus and cervix with ALL is extremely uncommon, and ovarian

involvement is even rarer (44).

2.1.4.6 Gastrointestinal tract manifestation

Gastrointestinal manifestations in childhood ALL is present in one-fourth

of patients at autopsy and usually during relapse. Patients with leukemic

infiltrates are frequently asymptomatic or have non-specific and vague

complaints. The most common symptoms are probably abdominal pain, diarrhea,

nausea, vomiting, or gastrointestinal bleeding (45).

2.1.4.7 Mediastinal manifestation

Patients with precursor T-cell ALL frequently affect the thymus and appear

with a mediastinal mass with or without associated pleural effusions. This results

in respiratory distress and other signs of superior vena cava syndrome (46). About

one-half of children with T-cell ALL have mediastinal masses (24).
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2.1.4.8 Biochemical abnormalities

Frequent breakdowns of leukemic cells cause hyperuricemia (47).

Hyperkalemia is often associated with massive cell lysis (48). Hyperphosphatemia

with secondary hypocalcemia is often observed at diagnosis (49). High serum

levels of lactate dehydrogenase (LDH) are detected at ALL diagnosis and relapse

due to rapid cell turnover, and it is reported to be normalized during remission

(24).

2.1.5 Diagnosis of ALL

The initial step in diagnosing childhood ALL begins with patient history and

physical examination. After evaluation of the chief complaint and symptoms,

several diagnostic tests and clinical procedures are ordered to approach the

diagnosis of ALL, as formulated below:

 Complete Blood Count (CBC) with differential and peripheral blood smears

are quick and inexpensive investigations to evaluate the cellular constituents

and examine abnormalities (50).

 Bone marrow aspiration is performed for a definitive diagnosis of acute

leukemia. It is usually operated under general anesthetic in children. Bone

marrow aspirate assesses the cellularity, morphological, immunological,

cytogenic, and enumeration of blast cells and mature cells. During treatment,

BM aspiration is also performed to establish a response to treatment by the

determination of minimal residual disease (MRD) (51). The standard criteria

to confirm ALL diagnoses requires a minimum of 20% blast cells (48).
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 Bone marrow trephine biopsy is performed when BM aspiration is not possible

in a case with compact bone marrow and a ‘dry tap’ due to marrow fibrosis,

infarction, or necrosis. It is also used as a diagnostic test to show the degree

of disruption in bone marrow integrity as a result of leukemia development

(52, 53).

 Cytochemical special stains are used to identify cell lineages (lymphoid,

myeloid), such as Periodic Acid Schiff (PAS), Sudan Black B (SBB), and

Myeloperoxidase (MPO) (54).

 Histochemistry and flow cytometry immunophenotyping studies are

performed for BM aspirates and peripheral blood samples using a group of

monoclonal antibodies to assign acute leukemia lineage (55).

 Cytogenetic and molecular studies are performed to identify specific genetic

abnormalities using karyotyping, qPCR, FISH, or SNP array analysis (56).

 A lumber puncher test is performed for CSF cytologic analysis. Depending on

CSF results, CNS involvement in childhood ALL (42) is classified as follows:

CNS-1: less than 5 WBC/mm3, and no blasts detected in the CSF.

CNS-2: less than 5 WBC/mm3, and blasts detected in the CSF.

CNS-3: more than 5 WBC/mm3, and blasts detected in the CSF or cranial

nerve involvement or presence of cerebral mass. CSF with more than 10

RBC/mm3 with or without blasts, is defined as a traumatic lumbar puncture

(TLP). The following formula is used to define the presence of CNS leukemia:
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if the ratio of CSF WBC/CSF RBC is greater than Blood WBC/Blood RBC

then, CNS involvement in ALL is present (48).

 Chemistry assays are performed to detect liver and kidney problems produced

by leukemic cell dispersal or the adverse effects of chemotherapy treatments.

 Ultrasound sonography and radiography are performed to check the presence

of mediastinal mass, cardiomegaly, and hepatosplenomegaly (57).

 Electrocardiography (ECG) and echocardiogram are performed to check

cardiac function (58).

 Tissue Human Leukocyte Antigen (HLA) typing is performed when a donor

stem cell transplant is a part of ALL treatment (59).

 Cytomegalovirus antibody titer, hepatitis virus screen, and HIV screen are

performed to detect infections (60, 61).

 Coagulation tests are performed to check blood is clotting properly (62).

2.1.6 Prognostic factors and risk stratification of childhood ALL

Several clinical and laboratory-based features were identified to have

prognostic value in response to therapy (63). Patient age at diagnosis, initial WBC

count, gender, immunophenotype, genetic alterations, and early responsiveness

to induction therapy has been identified as highly important factors to assess

prognosis and define risk group in childhood ALL (Table 2.2). Several criteria

have been defined to classify risk stratifications by some cooperative groups. For

example, a set of risk criteria was constructed in 1993 by the Pediatric Oncology
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Table 2.2. Prognostic factors in pediatric ALL.

Prognostic factors Favorable Unfavorable Reference

Age (year) 1 to 9 ˂1 or ≥10 (64)

WBC count (×109/L) ˂50 ˃50 (65)

Gender Female Male (14)

Ethnicity White Black (66)

Immunophenotype B-cell lineage T-cell lineage (67)

Genotype Hyperdiploidy˃50
; ETV6-RUNX1
t(12;21)(TEL-
AML1)
Trisomies 4,10,17

Hypodiploidy˂44
; t(9;22)BCR-
ABL1
t(4;11)MLL-AF4
t(17;19) TCF3-
HLF

(68)

CNS involvement CNS1 CNS3 (69)

Testicular Enlargement Absent Present (70)

Time to remission ˂14 days ˃28 days (65)

MRD at end of
induction

˂0.01% ≥0.01% (71)

Group (POG) and Children’s Cancer Group (CCG) (72). Their criteria defined

standard risk as (a WBC count less than 50,000/µl and patients aged 1 to ˂10

years), and high-risk (all other ALL patients including T-ALL regardless of WBC

count or age). The National Cancer Institute (NCI) risk group classification,

defined standard-risk as (WBC count less than 50,000/µl and age less than 10

years) and high-risk (WBC count more than 50,000/μl and/or age 10 years or

older) (73). Pediatric ALL cases most often are classified into standard-, medium-
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, and high-risk stratify groups (9). Based on known prognostic factors, pediatric

oncologists stratified patients into various risk groups. Lower-risk group, a

favorable outcome, can be treated less intensively to reduce late side effects of

treatment toxicities. Higher-risk group, unfavorable outcome, targeted with more

aggressive and diverse types of therapies (74).

2.1.7 Treatment of ALL

Childhood ALL treatment protocols generally involve three main phases:

induction, consolidation, and maintenance; including CNS prophylaxis therapy

and intensive supportive care. The protocols include an intensive combination of

chemotherapy regimens and it may be supplemented with hematopoietic stem cell

transplantation and/or radiation therapy. These treatments take two to three years

based on early therapy outcomes, the intensity of the current protocol, and the

analysis of prognostic factors. Cure rates are more than 80% in pediatric patients

at five-year survival rates (11, 75, 76).

2.1.7.1 Induction therapy

Remission induction is the first phase of chemotherapy, in which nearly all

leukemic cells in the bone marrow are rapidly eradicated to reduce tumor burden

and restore normal hematopoiesis. Patients in complete remission are defined as

the bone marrow of normal cellularity, with less than 5% of lymphoblasts present,

and CBC count within the normal range (77). The backbone of the induction

regimen typically includes vincristine, asparaginase, and a glucocorticoid. For the
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high-risk group, an additional fourth drug, anthracycline is added to the dose

regimen to reduce bone marrow relapse (75, 78). On the day 29th of induction,

ALL patients are tested for minimal residual disease (MRD). Based on the results

of the MRD test and cytogenetic risk group, post-induction treatment is then

introduced (79, 80).

2.1.7.2 Consolidation therapy

After the achievement of complete remission, the second phase of

treatment for ALL patients is consolidation or intensification therapy. This

additional therapy is to eradicate any remaining drug-resistant leukemic cells,

which lowers the chance of relapse and survival improved. The patients receive

the same drug schema used in the induction phase in combination with different

drugs depending on the risk group assignment, the day 29 MRD result, the

absolute neutrophil count, the platelets count, and their body mass index (BMI).

The duration of the treatment and combination of the drugs considerably vary

among patient populations (65). The most widely used consolidation schema is

the Berlin-Frankfurt-Munich (BFM) protocol. The treatment of standard-risk

patients in the consolidation phase includes the administration of

cyclophosphamide, cytarabine, 6-mercaptopurine, and methotrexate. The

treatment of high-risk patients receives additional regimens of asparaginase and

vincristine (57, 81). Delayed intensification is introduced to all patients or
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patients with higher risk. It improves the outcome and reduces the risk of relapse

(82, 83).

2.1.7.3 Maintenance therapy

Maintenance or continuation therapy is performed in low intensity to

prevent relapse and to further reduce nondetectable residual leukemic cells after

consolidation therapy. The patients receive daily oral 6-mercaptopurine, weekly

methotrexate, periodically corticosteroids, and vincristine for two to three years.

The effectiveness of this phase of treatment is determined by the metabolism of

6-mercaptopurine to 6-thioguanine (57, 84). The metabolites of 6-mercaptopurine

are quantified. The pediatric patients on continuation therapy are carefully

monitored to address the related chemotherapy toxicity and compliance issues

(85, 86).

2.1.7.4 CNS-directed therapy

At the time of diagnosis, leukemic CNS involvement is infrequent; it is

seen in 3-7% of the patients and more than half of the cases in the absence of

CNS-directed therapy. CNS provides a pharmacological sanctuary site for the

leukemic cells, which are undetected at diagnosis and systemic chemotherapy

cannot readily access them because of the blood-brain barrier. Specific CNS

prophylaxis is introduced early in the protocols, to eradicate clinically CNS

disease at the time of diagnosis and to avoid the risk of CNS relapse (87). CNS-

directed therapies usually involve high-dose systemic chemotherapy, intrathecal
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chemotherapy (87, 88), and cranial irradiation in a small subgroup of children

with overt CNS (89). The suggested radiation dose is highly dependent on the

systemic chemotherapeutic intensity. Treatment with cranial irradiation of 18

Gray is typically warranted in patients with CNS-3 at diagnosis. Even in the

absence of cranial irradiation, intensified CNS-directed chemotherapy is related

to attentional dysfunction in survivors of childhood ALL (90). CNS-directed

chemotherapy carries the chance of secondary CNS neoplasms, seizures,

encephalopathy, and neurocognitive toxicities that probably cause continual

impairments in intelligence, memory, processing speed, attention, and

administrative functions (91, 92).

2.1.7.5 Supportive care

Enhanced intensive supportive care is crucially important for ALL patients

and it contributes to achieving complete drug dose, reducing chemotherapy-

related toxicities, and improving survival rates (93). Supportive care mostly

involves infection control (94, 95), management of tumor lysis syndrome (96-

98), management of thrombosis (99, 100), management of thrombocytopenia and

anemia (101-104), and hematopoietic stem cell transplantation (HSCT) therapy

(105-107).
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2.2 Human kallikrein-related peptidases

The human tissue kallikrein and kallikrein-related peptidases (KLKs)

consist of a single family of fifteen homologous, highly conserved, secreted

trypsin- or chymotrypsin-like serine proteases (108). Kallikrein was first isolated

in high concentrations from pancreatic extracts by Werle and colleagues in the

1930s, and the term originated from the Greek word (kallikreas) which means the

pancreas (109). Tissue and plasma kallikreins are two distinct types of kallikreins

that have different molecular weights, gene structure, substrate specificity,

immunological features, and the type of kinin produced from kininogens (110).

Kallikreins are present in diverse tissues and bodily fluids acting as enzymes

cleaving peptide bonds (111). Tissue KLKs have a wide spectrum of important

roles in normal and pathophysiological processes including kinin formation, skin

desquamation, blood pressure control, semen liquefaction, tissue remodeling,

electrolyte balance, and prohormone processing (112). Plasma kallikrein is a

glycoprotein encoded by the KLKB1 a single gene mapped on human

chromosome 4q34-35. It is only expressed by the liver cells, then it is secreted

into the blood system (113, 114). The gene consists of 15 exons and encodes an

inactive enzyme (114). The enzyme is then activated by the coagulation factor

XII. High molecular weight kininogen is cleaved by plasma kallikrein, releasing

the bioactive peptide bradykinin. (115, 116). Plasma kallikrein works as a

mediator of inflammatory reactions, blood clotting, fibrinolysis, blood pressure,

and bradykinin secretion (110, 115, 117).
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2.2.1 Gene family of kallikrein-related peptidases

Human kallikrein-related peptidases present the largest uninterrupted

cluster of serine proteases in the human genome. They are coded for by a family

of fifteen functional genes clustered contiguously on chromosome 19 located at

q13.3-13.4 (118-120). The human KLK locus is attached centromerically by the

testicular acid phosphatase gene (ACPT), and telemetrically by a cancer-

associated gene (CAG), and Siglec-9 belongs to the SIGLEC (Sialic acid-binding

Ig-like lectin) family (121, 122). A genetic map of the human KLK locus is

illustrated in (Figure 2.2).

Figure 2.2. The human kallikrein locus, gene, and protein features.

Schematic representation of (a) The human KLK gene cluster found at chromosome 19q13.4
and the corresponding (b) gene, and (c) protein structure. This figure is adapted from (123).
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The classical kallikreins are KLK1 (tissue kallikrein), KLK2 (glandular

kallikrein), and KLK3 (PSA), which were the first three genes discovered in the

human kallikrein locus (124). KLK4 to KLK15 represent the rest of the kallikrein

gene family, which was identified in the late 1990s. (125). Proteases KLK2-15

are formally named kallikrein-related peptidases, which are without confirmed

kininogenase activity (119). The members of the human kallikrein gene family

are compared below (120, 125):

 All genes of the family colocalize to the same chromosomal regions (19q13.3-

13.4) in a linear arrangement.

 Serine proteases with a conserved catalytic triad (histidine, aspartic acid, and

serine) are encoded by all genes.

 Although the family's genes all have five coding exons, certain members have

one or more 5ˊ untranslated exons.

 The coding exons are close in size or identical.

 All members of the gene family have entirely conserved intron phases.

 At the DNA and amino acid levels, all of the family's genes exhibit strong

sequence homologies (40-80 percent).

 Most KLKs in the family are controlled by steroid hormones including

androgen, estrogen, and progestin in the body tissues (126, 127).

 Epigenetic-related processes including DNA methylation, histone

modification, and miRNA-mediated modulation of mRNA levels have been
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demonstrated to be involved in the transcriptional and post-transcriptional

regulation of KLKs (128-130).

 Furthermore, it has been established that single nucleotide polymorphisms

(SNP) affect the KLKs’ mRNA and protein expressions or could adjust the

proteolytic activity of the resulting KLK proteases (131).

2.2.2 Protein structure of kallikrein-related peptidases

Kallikrein-related peptidases are a subclass of secreted serine

endoproteases within the S1 family of clan SA (132). KLKs are translated as a

single chain of prepro-enzymes with varying lengths that share approximately

40% protein identity (133). The prepro-KLKs are proteolytically fragmented

upon production from the secretory pathway at the amino-terminal signal peptide

(134). Once secreted, the pro-KLKs are still inactive, and further processed via

cleavage of the N-terminal propeptide by other KLKs or proteases to become

active extracellular peptidases (133, 135). Activated KLKs function to cleave

bonds within polypeptide chains with three conserved catalytic residues; always

occurring at the position of His57, Asp102, and Ser195 (standard chymotrypsin

numbering) that span the active site, histidine near the end of the second coding

exon, aspartic acid in the middle of the third coding exon, and serine at the

beginning of the fifth coding-exon (Figure 2.2) (136). All KLK proteins consist

of ten fully conserved cysteine residues forming five disulfide bonds (136). An

additional pair of cysteine residues occur in KLK4-12 and KLK15 which is
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unique for kallikreins compared with other S1A peptidases. Kallikrein substrate

specificity is determined by residue 189, which is placed at the base of the

substrate-binding pocket (137). The substrate-binding pocket's amino acid could

be aspartate, exhibiting trypsin-like specificity cleaving after arginine or lysine

residues as occurring in all of KLK 1, 2, 4, 5, 6, 8, 10, 12, and 13 (138). KLK15

possesses trypsin-like specificity, except with Glu189 (139). For tyrosine, leucine,

and phenylalanine residues, both KLK3 and KLK7 possess chymotrypsin-like

specificity. They are with Ser189 and Asn189 residues, respectively (140). KLK9

possesses chymotrypsin-like specificity which has a Gly189 residue that is likely

responsible for the inability of KLK9 to hydrolyze the pro-KLK sequences (139).

KLK 11 and KLK 14 have both trypsin-like and chymotrypsin-like activities.

Hydrolysis of the peptide bond is initiated when the hydroxyl oxygen atom of the

catalytic Ser195 attacks the carbonyl of the substrate peptide bond utilizing His57

as a general base (141). All kallikreins include a highly conserved Gly193, except

for KLK10, which contains serine instead. (142). During hydrolysis, Gly193 is

involved in stabilizing oxyanion intermediate of the internal peptide bond (143).

It appears that KLK10 lacks proteolytic activity against traditional substrates due

to the absence of Gly193 in its structure (139, 144). The proteolytic activity of

KLKs is controlled by means of proenzyme activation, inactivation through

internal fragmentation, and/or complex development with endogenous plasma

and tissue inhibitors (145).
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2.2.3 (Patho)physiological expressions and clinical relevance of kallikrein-

related peptidases

KLKs have diverse expression profiles and are found as bioactive

components in various tissues and biological fluids that are crucial in the

regulation of basic physiological functioning (Figure 2.3). The aberrant

expression of a variety of kallikrein-related peptidases has been linked to a range

of diseases and cancers. KLKs play a crucially important role as biomarkers, and

PSA screening test is the best example of the clinical utilities of the family.

KLK1 is mostly produced in the pancreas, salivary gland, and kidney

(146). By cleavage of low molecular weight kininogen, KLK1 releases kinin.

This involves blood pressure regulation, pain induction, smooth muscle

contraction, electrolyte balance, vascular permeability, neutrophil chemotaxis,

and inflammation (147, 148). Besides, KLK1 involves in releasing nitric oxide,

reducing oxidative stress, processing growth factors, and peptide bonds (147,

148). It was found that KLK1 was correlated with gastrointestinal stromal tumor

invasion (149), and coronary artery disease (150).

Both KLK2 and KLK3 are extremely expressed in the prostate and seminal

plasma (151). They have a role in seminal clot liquefaction and spermatozoa

release through hydrolysis of seminogelin Sg-I and Sg-II, and the primary

structural gel-forming proteins in human semen, fibronectin, is generated by

seminal vesicles essential for sperm motility (152, 153). KLK3, commonly
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Figure 2.3. The functions of kallikreins.

Schematic representation of some functions of KLKs: They involve several normal
physiological and pathological conditions. This figure is adapted from (154).

known as the prostate-specific antigen (PSA), along with KLK2 is controlled by

androgens and is predominantly expressed in prostate and breast malignancies.

They are biomarkers for both cancers' diagnosis, prognosis, and monitoring (5, 7,

124, 155-158).

KLK4 was originally designated as enamel matrix serine protease

1(EMSP1) and was shown a role in cleaving enamelin (159). KLK4 involves

amelogenesis, namely the formation of tooth enamel to achieve a high degree of

mineralization (160). KLK4 is expressed in many tissues and predominately in

the prostate. KLK4 is overexpressed in prostate cancer and ovarian cancer tissues

(161, 162). KLK4 overexpression was also observed in colorectal cancer and its

mRNA expression in colorectal adenocarcinoma was reported to be clinically
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relevant as a poor prognostic indicator for unfavorable disease-free survival

(163).

KLK5 expression is abundant in diverse human tissues, its mRNA is highly

expressed in skin, breast, testis, ovary, salivary gland, and esophagus (145).

KLK5 is a major proteinase along with KLK7, and KLK14 involving skin

desquamation by degrading desmosomal adhesion proteins in the outermost layer

of the skin (164-167). Dysregulation of KLK5 expression was found in ovarian,

breast, prostate, and testicular carcinomas (168-171). It was reported that KLK5

is a potential tumor biomarker in endocrine-related malignancies correlated with

poor prognosis in ovarian and uterine cervical malignancies (172). Differential

expression of KLK5 is also found in hormone-independent cancers such as lung

and bladder carcinomas (168).

KLK6 is highly produced in healthy tissues of the CNS, kidney, pancreas,

endometrium, mammary, and prostate (173). KLK6 mRNA expression is

differentially regulated and contributed as an unfavorable prognostic tumor

marker depending on the cancer grade. It is downregulated in breast cancer (174),

upregulated in colorectal adenocarcinoma (175), and endometrial carcinoma

(176). In 2016, KLK5-9 transcripts were analyzed in distinct cancerous human

tissues including leukemia via nested reverse transcription PCR (177). High

serum levels of KLK6 protein were observed in ovarian cancer (178, 179), uterine

serous papillary carcinoma (180, 181), psoriasis (182), Alzheimer’s disease
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(183), and multiple sclerosis (184), and KLK6 was found to contribute in their

pathogenesis.

KLK10 is expressed in the skin, tonsils, brain, pancreas, esophagus, and

sex organs (185). KLK10 expression is hormone-regulated and tissue-specific

(186, 187). KLK10 is aberrantly expressed in pancreatic cancer and hormone-

dependent malignancies. KLK10 represents a potential tumor suppressor gene,

and its expression is downregulated in ALL, breast, prostate, and testicular

malignancies (188-192). KLK10 possesses as a biomarker in the diagnosis and

prognosis of pancreatic, colorectal, and ovarian cancers (193-195).

KLK14 is expressed in the CNS, skin, breast, prostate, testis, bone marrow,

lymph node, colon, skeletal muscle, and lung (196-198). It is regulated by steroid

hormones (199, 200). KLK14 has a role in the control of activation and/or

inactivation of some kallikreins including KLK1, KLK3, KLK5, and KLK11

(201, 202). KLK14 also involves skin desquamation, seminal clot liquefaction,

cancer growth, invasion, and angiogenesis (164, 201-204). This gene has been

examined as a potential tumor marker; downregulated at the mRNA level in

breast, prostate, and testicular malignancies (197). Also, its upregulation at the

mRNA level can be considered a poor prognostic biomarker for patients with

colorectal cancer; have discriminatory power between colorectal cancer and

adenoma patients (205). Table 2.3 demonstrates the evidence of deregulation of

KLK6, KLK10, and KLK14 in several cancers and diseases (154).
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Table 2.3. Deregulation of KLK6, KLK10, and KLK14 in cancers and

diseases.

Disease Kallikrein Factor Observation

Alzheimer’s disease
KLK6 (CSF),
KLK10

Increased expression

KLK6 (brain,
blood)

Decreased expression

Aneurism KLK6 Decreased expression
Suggestion of
unfavorable
prognosis

Multiple sclerosis KLK6 Increased expression Advanced disease
Dementia with Lewy
bodies

KLK6 Decreased expression Suggestion of
diagnostic marker

Psoriasis KLK6, KLK10 Increased expression Severity of skin
lesions

Parkinson’s disease KLK6 Increased expression Disease-associated
marker

Breast cancer

KLK10, KLK14 Increased expression Potential diagnostic
biomarkers

KLK6 Increased expression Suggestion of
favorable prognosisKLK10 Promoter methylation

Colorectal cancer KLK6, KLK10 Increased expression
Suggestion of
unfavorable
prognosis

Gastric cancer KLK6, KLK10 Increased expression
Suggestion of
unfavorable
prognosis

Head and neck cancer
KLK10 Promoter methylation Suggestion of

unfavorable
prognosisKLK6, KLK10 Increased expression

Lung cancer

KLK10 Promoter methylation
Suggestion of
unfavorable
Prognosis

KLK6 Increased expression

KLK14 Increased expression Diagnostic marker
Melanoma KLK6 Increased expression

Ovarian cancer

KLK6 Increased expression Advanced stage

KLK10, KLK14 Increased expression Suggestion of
favorable prognosis

KLK10 SNP

Prostate cancer
KLK10 SNP

SNP

Suggestion of
unfavorable
prognosisKLK14

This table is adapted from (154).
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Chapter Three: Materials and Methods

3.1 Laboratory equipment, kits, and reagents

All instruments and tools used in this study are listed in (Appendix A). The kits

and reagents used in this study are listed in (Appendix B).

3.2 Study design and ethical consideration

This study was a prospective, analytical, observational, and case-control

study. The population involved in this study was male or female children aged 1-

15 years. The participants involved in the study were admitted to the Pediatric

Department in Hiwa Cancer Hospital in Sulaimani Governorate in Kurdistan/ Iraq

and they were newly diagnosed with acute lymphoblastic leukemia (ALL). Also,

healthy pediatric volunteers were selected as control individuals. The sample

collection and molecular biology work, including the patients’ follow-up started

in June 2018 and was completed in January 2020.

The research proposal was approved by the Research Ethics Committee of

the University of Sulaimani's College of Medicine (approval number 55 on

September 17th, 2017), the Directorate of Health in Sulaimani Governorate, and

the Scientific Committee at Hiwa Hospital (Appendix C). The research and

practical work of the present study was conducted at Kurdistan Institution for

Strategic Studies, Molecular Biology Laboratory in Hiwa Cancer Hospital, and

Bakhshin Hospital.
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3.3 Enrollment and consent

A total of twenty-three newly diagnosed ALL patients and twelve healthy

pediatric volunteers were qualified for the inclusion criteria of the current study.

The guardian of all of the recruited individuals was requested to complete

an informed consent form in writing voluntarily before they were engaged in the

research. The purpose, procedure, and benefits of the study were also explained

to the participants and their families (Appendix D). All participants have gone

through a standardized interview process and all demographic information was

collected on a form specially designed for the study, including sex, age, height,

weight, and medical history and they received more information about the study

protocol (Appendix E).

3.4 Inclusion and exclusion criteria

Inclusion criteria for the patients:

 Newly diagnosed ALL patients and admitted to Pediatric Department in Hiwa

Cancer Hospital. Clinical diagnosis of ALL cases was established by bone

marrow examination and cell Immunophenotyping.

 Male or female pediatric participants.

 Accept to sign an informed written consent form, willing to participate in and

comply with the study.

Exclusion criteria for the patients:

 A known malignancy and/or a hematological disorder other than ALL.
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Inclusion criteria for the control group:

 Male or female healthy pediatric volunteers. They were examined by specialist

physicians, and their status was confirmed clinically by laboratory

examination results.

 Accept to sign an informed written consent form, willing to participate in and

comply with the study.

Exclusion criteria for the control group:

 A known malignancy and/or a hematological disorder.

3.5 Sample collection

Two milliliters of venous blood were obtained from each patient's cubital

vein using disposable syringes. The drawn blood was collected in a lavender tube,

with potassium EDTA content. The samples were transported to Kurdistan

Institution for Strategic Studies in a cool box. They were instantly used for

molecular biology work. Blood samples were collected from leukemic patients at

three different times: when diagnosed with ALL, after one month of receiving

chemotherapy, and after three months of receiving chemotherapy. Diagnosis of

childhood ALL cases was established by bone marrow examination and cell

immunophenotyping. ALL patients were treated according to UKALL Interim

Guidelines (206).
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3.6 RNA extraction

The RNA was extracted using a Prime PrepTM Blood RNA Extraction Kit

(GeNet Bio, Daejeon, South Korea) according to the manufacturer's instructions.

This kit extracts total cellular RNA from whole blood. Contaminants and enzyme

inhibitors such as heparin and hemoglobin were entirely removed. The wash

buffers were made following the user's guide before commencing the experiment,

by the addition of 20 ml and 44 ml of absolute ethanol to Buffer BRW1 and Buffer

BRW2, respectively. A 200 μl of whole blood with 1 ml of Buffer BRR in a 1.5

ml eppendorf microcentrifuge tube was mixed. The tube was incubated on ice for

15 min until the cloudy mixture became translucent which indicates lysis of

erythrocytes. The tube was vortexed twice during incubation. The tube was

centrifuged at 3500 rpm for 15 min at 4°C. After centrifugation leukocytes formed

a pellet and the supernatant was smoothly removed using micropipette. A 400 μl

of Buffer BRR was added to the cell pellet and resuspended by pulse vortexing.

The tube was centrifuged at 3500 rpm for 10 min at 4°C and the supernatant was

completely removed using a micropipette.

Then, 350 μl of Buffer BRL and 3.5 μl of β-mercaptoethanol (β-ME, 14.2

M) were added to the pelleted leukocytes and mixed by vortexing for 15 sec. The

lysate was transferred into Spin Column 1 (blue O-ring) placed in a 2 ml

collection tube, and centrifuged for 2 min at 14000 rpm. After centrifugation, the

flow-through was carefully transferred onto a new 1.5 ml eppendorf tube. After
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that, 350 μl of 70% ethanol was added to the homogenized lysate. The tube was

centrifuged at 3,500 rpm for 20 sec at 20°C.

Up to 700 μl of the mixture was transferred to Spin Column 2 and collected

in a 2 ml tube, centrifuged at 14000 rpm for 1 min at 20°C and the pass-through

was discarded. Spin Column 2 was reinserted onto the same collection tube. To

wash the membrane, 700 μl of Buffer BRW1 was introduced to Spin Column 2

and centrifuged at 14000 rpm for 1 min at 20°C. The Spin Column 2 was carefully

reinserted onto a clean collection tube. For another wash of the membrane, 500

μl of Buffer BRW2 was added to Spin Column 2, centrifuged at14000 rpm for 1

min at 20°C. The pass-through was removed and the Spin Column 2 was

reinstalled in the same collecting tube. For further washing, this step was repeated

twice. It was then centrifuged at 14000 rpm for 2 min at 20°C to remove residual

wash, so during RNA elution, the membrane of the spin column dried, and no

ethanol was carried over.

To elute the RNA, a 1.5 ml nuclease-free collection tube was inserted into

Spin Column 2. In Spin Column 2, 40 μl of Buffer BRE was introduced to the

membrane's center and left at room temperature for 2 min. At 20°C, it was

centrifuged for 2 minutes at 14000 rpm. The purified RNA samples were then

aliquoted and stored at (-20°C) for immediate use, and for long-term storage, it

was kept at (-70°C).
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3.7 Checking RNA integrity

The quantity, quality, and integrity of extracted RNA were evaluated. The

concentration of RNA from all the samples was measured using Eppendorf

Biophotometer, following the operating manual. A clean, dry, new cuvette was

chosen to measure blank (zero absorbance) using 50 μl nuclease-free water. Then,

the RNA sample's concentration was measured in μg/ml using a 5 μl RNA sample

and 45 μl nuclease-free water. For gene expression analysis, only RNA samples

with an absorbance ratio A260/280 greater than 1.8 and an A260/230 ratio of

nearly 2 were selected (207). The integrity and quality of the RNA samples were

examined on 1.5% agarose gel electrophoresis visualized by 1.0 % ethidium

bromide. Two ribosomal RNA bands appeared, one of 18S rRNA and the other

of 28S rRNA. The band of 28S rRNA had higher intensity than 18S rRNA (208).

This gave a clue about the integrity of the RNA samples, and those with

significant degradation were discarded (209).

3.8 cDNA synthesis

The RNA samples were reverse transcribed into a first-strand

complementary DNA (cDNA) before PCR amplification, using 2X

SuPrimeScript RT Premix (SR-3000) kit, following the manufacturer’s

instructions (Table 3.1). Also, a “no template control” NTC tube was prepared

per experiment, which excludes the RNA template; instead 9 µl DEPC-treated

water was included in the total.
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Table 3.1. Reverse-transcription reaction components.

The thermal cycler instrument (Applied Biosystems, USA) was

programmed as follows: stage 1; heating at 50°C for 60 min, stage 2; heating at

70°C for 10 min, then holding at 4°C (Appendix F). Following this, the tubes

were inserted into the thermal cycler and the cycling program started to perform

cDNA synthesis. The cDNA samples were then aliquoted and kept at (-20°C) for

immediate use and it was stored at (-70°C) for long-term storage.

3.9 Primers

In the present study, the used oligonucleotide primers of KLK6 (210),

KLK10 (193), KLK14 (211), GAPDH (212), and ACTB (213) (Table 3.2) were

obtained from published articles. The primers were synthesized by (Macrogen,

Seoul, South Korea).

Reaction Components Volume

SuPrimeScript RT Premix (2X) 10 µl

Oligo(dT)18 primer (100 pmol/ µl) 1 µl

DEPC-treated H2O 1 µl

Total RNA 8 µl

Total Reaction Volume 20 µl

Oligo(dT)18 Primer is an 18-mer single-stranded oligonucleotide with 5' and 3' hydroxyl tails
produced for use as a primer for cDNA synthesis.
The dNTP (Deoxynucleotide) mix is a pre-mixed solution that contains four nucleotides:
dATP, dCTP, dGTP, and dTTP.
RNase-free DEPC-treated H2O (diethyl pyrocarbonate-treated water) is used to minimize the
risk of RNA degradation by RNases.
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Table 3.2. Primers used in PCR amplifications.

Primer Name NCBI

Reference

Sequence

Primer sequence forward/reverse

(5′--3′)

Product

Size

bp

Type of

PCR

KLK6

(homo sapiens)

NM_001319949.1 Forward: GAAGCATAACCTTCGGCAAA

Reverse: GGGAAATCACCATCTGCTGT

237
Quantitative

real-time

PCR

KLK10

(homo sapiens)

NM_001077500.1 Forward: TCTACCCTGGCGTGGTCACC

Reverse: GCAGAGCCACAGGGGTAAACAC

148
Quantitative

real-time

PCR

KLK14

(homo sapiens)

NM_022046.4 Forward: GGTCATCACTGCTGCTCACT

Reverse: GTGGGTCCGGGAGTTGTAGTT

142
Quantitative

real-time

PCR

GAPDH

(homo sapiens)

“housekeeping”

NM_001289745.2 Forward: ATGGGGAAGGTGAAGGTCG

Reverse: GGGTCATTGATGGCAACAATATC

107
Quantitative

real-time

PCR

ACTB

(homo sapiens)

“housekeeping”

NM_001101
Forward:

ATCTGGCACCACACCTTCTACAATGAGCTGCG

Reverse:

CTCATACTCCTGCTTGCTGATCCACATCTGC

837 Conventional

PCR

3.10 Conventional RT-PCR

To validate the process of reverse transcription of RNA and the quality of

cDNA, conventional RT-PCR was carried out using ACTB primers and

OnePCR™ Ultra (PCR Master Mix) kit (GeneDireX, Inc., US) according to

(Table 3.3). A “NTC” tube was prepared per experiment.
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Table 3.3. Conventional RT-PCR reaction components.

Reaction Components Volume Final concentration

OnePCR™ Ultra Premix (2X) 10 µl 1X

Forward primer (10 pmol/ µl) 1 µl 0.5 µM

Reverse primer (10 pmol/ µl) 1 µl 0.5 µM

DEPC-treated D.W. 5 µl

cDNA Template 3 µl

Total Reaction Volume 20 µl

The thermal cycler (Applied Biosystems) was programmed based on the

cycling conditions (Appendix G): stage 1; initial denaturation, heating at 94°C

for 5 minutes, stage 2; amplification stage, heating at 94°C for 1 minute

(denaturation step), then heating at 56°C for 1 minute (annealing step), next

heating at 72°C for 1 minute (extension step), stage 2 was repeated for 35 cycles,

after that stage 3; final extension for 10 minutes then holds on 4°C. The tubes

were inserted into the thermal cycler and the cycling program started to perform

PCR. The PCR products were stored at (-20°C). The target sequence’s

amplification was affirmed using 1.5% agarose gel electrophoresis.

3.11 Real-time PCR (qPCR)

The real-time quantitative PCR (qPCR) was performed using the Rotor-

Gene SYBR Green PCR Kit (Qiagen, Hilden, Germany) according to (Table 3.4).

A “NTC” tube was prepared per experiment. The Rotor-Gene Q was programmed

following the cycling conditions in (Table 3.5).
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Table 3.4. Real-time PCR reaction setup.

Reaction Components Volume/reaction Final

concentration

Rotor-Gene SYBR Green PCR Master Mix

(2X)

10 µl 1X

Forward primer (10 pmol/ µl) 2 µl 1 µM

Reverse primer (10 pmol/ µl) 2 µl 1 µM

RNase-free water 4.5 µl

cDNA Template 1.5 µl ≤100 ng/reaction

Total Reaction Volume 20 µl

Table 3.5. Real-time PCR cycling conditions.

Step Time Temperature Additional
comments

PCR initial activation step 5 min 95°C Activation of
HotStarTaq Plus

DNA
Polymerase by

this heating step

Two-step cycling- 40 times the following two steps are repeated

Denaturation 5 sec 95°C

Combined annealing/ extension 10 sec 60°C* Fluorescence
data collection is

performed

*According to manufacturer's guidelines; this temperature should be used for QuantiTect
Primer Assays and all primer sets with a Tm well below 60°C.

Furthermore, to verify the reaction specificity of target gene amplification,

the Rotor-Gene Q was programmed to conduct a melting curve analysis for the

qPCR products (Appendix H). To ensure data reliability, all qPCR reactions were
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carried out twice. The PCR products were stored at (-20°C). The samples were

measured and the cycle threshold (Ct values) for each PCR cycle was established

by detecting fluorescence. The relative quantification method was used for the

qPCR analysis. The gene expression at the mRNA level was calculated using the

(2-∆∆Ct) comparative CT method (214).

3.12 Agarose gel electrophoresis

The RNA samples and the PCR products were visualized by agarose gel

electrophoresis (215, 216). Briefly, 1.5 g of agarose was added to 100 ml 1X

TBE (Tris/Borate/EDTA) buffer solution. The mixture was boiled in a microwave

with sporadic swirling until completely dissolved. The melted agarose was cooled

at room temperature to about 55°C, then 10 µL of ethidium bromide was added.

The gel was placed into the tray containing the comb in its position, and it was

left at room temperature for at least 20 minutes to solidify. The comb was

removed gently, and the gel with the tray was placed in the electrophoresis tank

containing 1X TBE buffer.

RNA samples were mixed with 6X loading dye (0.25% Bromophenol Blue,

0.25% Xylene Cyanol, 30% Glycerol) in a ratio of 1:3 (2 µl of the dye and 6 µl

of the RNA), and they were loaded into individual gel wells. Conventional RT-

PCR products had a red color as the kit contains a loading dye, so 8 µl of the PCR

product was directly loaded into the individual gel wells. An appropriate DNA

ladder was loaded into a gel well to determine the specific PCR product size.
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The gels were run at 60 Volts and 100 Volts for 50 min, for RNA samples

and PCR products, respectively. The electrophoresis bands in the gel were

visualized by a UV transilluminator with a gel documentation system and

photographed.

3.13 Statistical analysis

Since the distributions of KLK6, KLK10, and KLK14 mRNA expression

levels in ALL patients and normal controls were not Gaussian, therefore an

appropriate non-parametric test was used to assess the differences between the

groups. The Kruskal-Wallis test was used to compare the KLKs’ mRNA

expression of all study groups namely the normal controls, the newly diagnosed

ALL patients before starting chemotherapy, the patients after one month of

chemotherapy, and the patients after three months of receiving chemotherapy.

The Mann-Whiney U-test was used to compare the KLKs’ mRNA expression of

the normal controls and the ALL patients at the three conditions: on diagnosis,

after one month of chemotherapy, and after three months of receiving

chemotherapy. The Wilcoxon Signed-Rank test was used to compare the KLK’s

mRNA expression in ALL patients before and after chemotherapy.

Relationships between mRNA expression levels of the KLKs on diagnosis

and the continuous variables involved in this study were evaluated by Spearman’s

correlation analysis (rs).
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Receiver operating characteristic (ROC) analysis was used to investigate

the potential diagnostic relevance of the KLKs' mRNA expression by plotting

sensitivity against (1-specificity). The Hanley and McNeil method was used to

estimate the area under the curve (AUC) (217).

Logistic regression analysis was conducted using the mRNA expressions

of the KLKs on diagnosis as a continuous variable, for the prediction of the

presence of ALL.

GraphPad Prism 8 software was used to analyze the data. In all statistical

tests, a probability value less than 0.050 was defined as the level of statistical

significance: (* p< 0.05, ** p<0.01, *** p< 0.001, and **** p< 0.0001). All

probabilities were two-tailed.
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Chapter Four: Results

4.1 Recruitment and deposition

A total of twenty-three newly diagnosed ALL patients, and twelve normal

controls were qualified to involve in this prospective, analytical, and case-control

study. Real-time qPCR relative quantification of mRNA expression of KLK6,

KLK10, and KLK14 was performed for nineteen ALL patients and all of the

normal controls. The quantification of mRNA expression of the three KLKs in

all the leukemic patients was carried out at three different times: when diagnosed

with ALL, after one month of receiving chemotherapy, and after three months of

chemotherapy.

4.2 Demographic and clinical characteristics of the study cohort

The results of this study indicated that ALL patients’ age ranged from 1 to

15 years with a mean of 6.61 years (±0.95 SE), and a median of 5.0 years. The

age of the controls ranged from 2-13 years with a mean of 7.17 years (±1.15 SE),

and a median of 5.5 years. Males were dominated with 69.57% and 58.33% in

the patients and controls, respectively. The two groups’ age and sex were not

significantly different with (p=0.72) and (p=0.71), respectively. The demographic

and clinical variables of the cohort are shown in (Table 4.1).
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Table 4.1. Demographic and clinical variables of the study cohort.

Variables

Groups
ALL

Patients
(n=23)

Controls

(n=12)

Statistical
test p-valuee

t/ Fisher's
exact test

Age
(year; Mean ±SE) 6.61±0.95 7.17±1.15 t=0.3572 0.7233
Sex (N, %)

Male
Female

16 (69.57%)
7 (30.43%)

7 (58.33%)
5 (41.67%)

Fisher's
exact test

0.7091

WBCa

(x106 /ml; Mean± SE) 10.96±2.829 7.543±0.6986 t=0.8591 0.3965
Lymphocytesb

(x106 /ml; Mean± SE) 7.278±2.007 3.303±0.4621 t=1.411 0.1677
Serum LDHc

(IU/L; Mean± SE)
1285±270.1 NAd - -

ALL sub-type (N, %)
B-ALL
T-ALL

18 (78.26%)
5 (21.74%)

NAd - -

These data are for the newly diagnosed ALL patients before starting chemotherapy and the
control group; Reference ranges: a White Blood Cells (3.5-10.0) x106 /ml; b Lymphocytes
count (0.5-5.0) x106 /ml; c Lactate Dehydrogenase (240-480) IU/L; d NA: Not Available; e p
was calculated by (t) unpaired t-test or Fisher’s exact test.

The mean total WBC for the patients and controls were 10.96 and 7.543 X

106/ml, respectively, and they were not significantly different (p=0.3965). The

mean of lymphocytes for the patients and controls were 7.28 and 3.3 X 106/ml,

respectively, and they were not significantly different (p=0.1677). The patients’

serum LDH concentration was highly increased. The diagnosis of ALL sub-type

in the patients was 78.26% B-ALL and 21.74% T-ALL. The patients aged

younger than 8 years were more frequent. The distribution of age groups among

ALL sub-types and controls is demonstrated in (Figure 4.1).
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Figure 4.1. Distribution of age groups among ALL subtypes and controls.

4.3 Total RNA quantity and quality assessment

The concentration and purity of extracted total RNA for each sample were

measured by Eppendorf Biophotometer at 260 and 280 nm. The integrity and

quality of the RNA samples were also evaluated by agarose gel electrophoresis

stained with ethidium bromide. Two sharp bands appeared, one of 18S rRNA and

the other of 28S rRNA (ribosomal RNA). The band of 28S rRNA was more

intense than 18S rRNA. This was used to evaluate the quality of total RNA

samples (Figure 4.2).

4.4 cDNA quality assessment

The quality of cDNA samples was evaluated using conventional RT-PCR

using ACTB primers. Expression of the ACTB gene was an indication that cDNA

samples would be suitable to be used for performing real-time qPCR. The PCR
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Figure 4.2. Agarose gel electrophoresis for total RNA samples.

This figure illustrates agarose gel electrophoresis for total RNA of selected samples: A; ALL
patients on disease diagnosis, B; ALL patients after one month of receiving chemotherapy,
C; ALL patients after three months of receiving chemotherapy, F; normal controls. Each lane
represents RNA from its corresponding sample number; the RNA samples were loaded into
a 1.5% TBE agarose gel and detected with ethidium bromide staining.

products were assessed by agarose gel electrophoresis. The primers of ACTB

were successful in amplifying the 837 bp amplicon (Figure 4.3). In the negative

controls, amplification of no bands was an indicator of free genomic DNA

contamination.
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Figure 4.3. Agarose gel electrophoresis of ACTB PCR products.

This figure illustrates agarose gel electrophoresis of ACTB conventional RT-PCR products
for selected cDNA samples: A; ALL patients on disease diagnosis, B; ALL patients after one
month of receiving chemotherapy, C; ALL patients after three months of receiving
chemotherapy. M: 100bp DNA ladder. The PCR product samples were loaded into a 1.5%
TBE agarose gel, expected ACTB amplicon size is 837 bp.
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4.5 Quantitative analysis of the KLKs’ mRNA expression

A quantitative real-time PCR assay was developed to measure the relative

expression of genes of interest KLK6, KLK10, and KLK14 at their mRNA level.

4.5.1 Expression of KLK6 mRNA in the cohort

KLK6 mRNA expression levels of all the studied groups were compared

relative to each other using the Kruskal-Wallis test (p=0.0159; Figure 4.4).

Figure 4.4. Bar-graph of KLK6 mRNA expression in the cohort.

This graph demonstrates the distribution of KLK6 mRNA expression in each of the normal
controls, the newly diagnosed ALL patients before starting chemotherapy, the patients after
one month of chemotherapy, and the patients after three months of receiving chemotherapy.
P-values were calculated using the Kruskal-Wallis test (a) to compare the KLK6 mRNA
expression of all study groups, the Mann-Whitney U test (b) to compare the KLK6 mRNA
expression of the normal controls and ALL patients at the three conditions: on disease
diagnosis, after one month of chemotherapy, and after three months of chemotherapy, and the
Wilcoxon Signed-Rank test (c) to compare the KLK6 mRNA expression in the ALL patients
before and after treatments. KLK6 mRNA expression in the normal controls was significantly
higher than in ALL patients at the three conditions (p=0.002; p=0.0292 and p=0.0038
respectively by the Mann-Whitney U test).
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KLK6 mRNA expression levels in newly diagnosed ALL patients were

significantly decreased compared to their levels in normal blood samples

(p=0.002; Figure 4.4). The expression level of KLK6 mRNA in ALL patients

after one month of chemotherapy and after three months of receiving

chemotherapy were significantly decreased compared to their levels in normal

blood samples (p=0.0292 and p=0.0038 respectively; Figure 4.4).

The expression level of KLK6 mRNA in ALL patients after one month of

chemotherapy was increased compared to their level in the patients on disease

diagnosis (p=0.4413; Figure 4.4). While the KLK6 mRNA expression level in

ALL patients after three months of chemotherapy was slightly decreased

compared to their level in the patients on disease diagnosis (p=0.6794; Figure

4.4).

4.5.2 Expression of KLK10 mRNA in the cohort

KLK10 mRNA expression levels of all the studied groups were compared

relative to each other by the Kruskal-Wallis test (p˂0.0001; Figure 4.5).

KLK10 mRNA expression levels in newly diagnosed ALL patients were

significantly decreased compared to their levels in normal blood samples

(p=0.0001; Figure 4.5). The expression level of KLK10 mRNA in ALL patients

after one month and after three months of chemotherapy was significantly
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Figure 4.5. Bar-graph of KLK10 mRNA expression in the cohort.

This graph demonstrates the distribution of KLK10 mRNA expression in each of the normal
controls, the newly diagnosed ALL patients before starting chemotherapy, the patients after
one month of chemotherapy, and the patients after three months of receiving chemotherapy.
P-values were calculated using the Kruskal-Wallis test (a) to compare the KLK10 mRNA
expression of all study groups, the Mann-Whitney U test (b) to compare the KLK10 mRNA
expression of the normal controls and ALL patients at the three conditions: on disease
diagnosis, after one month of chemotherapy, and after three months of chemotherapy, and the
Wilcoxon Signed-Rank test (c) to compare the KLK10 mRNA expression in the ALL patients
before and after treatments. KLK10 mRNA expression in the normal controls was significantly
higher than in ALL patients at the three conditions (p=0.0001; p˂0.0001 and p=0.0175
respectively by the Mann-Whitney U test).

decreased compared to their levels in normal blood samples (p˂0.0001 and

p=0.0175 respectively; Figure 4.5). The expression level of KLK10 mRNA in

ALL patients after one month of chemotherapy was decreased compared to their

level in the patients on disease diagnosis (p=0.4413; Figure 4.5). While the

KLK10 mRNA expression level in ALL patients after three months of

chemotherapy was increased compared to their level in the patients on disease

diagnosis (p=0.0602; Figure 4.5).
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4.5.3 Expression of KLK14 mRNA in the cohort

KLK14 mRNA expression levels of all the studied groups were compared

relative to each other using the Kruskal-Wallis test (p˂0.0001; Figure 4.6).

KLK14 mRNA expression levels in newly diagnosed ALL patients were

significantly decreased compared to their levels in normal blood samples

(p=0.0007; Figure 4.6). The expression level of KLK14 mRNA in ALL patients

after one month of chemotherapy and three months of chemotherapy were

Figure 4.6. Bar-graph of KLK14 mRNA expression in the cohort.

This graph demonstrates the distribution of KLK14 mRNA expression in each of the normal
controls, the newly diagnosed ALL patients before starting chemotherapy, the patients after
one month of chemotherapy, and the patients after three months of receiving chemotherapy.
P-values were calculated using the Kruskal-Wallis test (a) to compare the KLK14 mRNA
expression of all study groups, the Mann-Whitney U test (b) to compare the KLK14 mRNA
expression of the normal controls and ALL patients at the three conditions: on disease
diagnosis, after one month of chemotherapy, and after three months of chemotherapy, and the
Wilcoxon Signed-Rank test (c) to compare the KLK14 mRNA expression in the ALL patients
before and after treatments. KLK14 mRNA expression in the normal controls was significantly
higher than in ALL patients at the three conditions (p=0.0007; p˂0.0001 and p˂0.0001
respectively by the Mann-Whitney U test).
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significantly decreased compared to their levels in normal blood samples

(p˂0.0001 and p˂0.0001 respectively; Figure 4.6).

The KLK14 mRNA expression level in ALL patients after one month and

three months of chemotherapy were decreased compared to their level in the

patients on disease diagnosis (p=0.0039 and p=0.1336 respectively; Figure 4.6).

4.6 Descriptive statistics of the KLKs’ mRNA expression in the cohort

The data from Table 4.2, Table 4.3, and Table 4.4 demonstrate the

descriptive statistics of mRNA expression levels of KLK6, KLK10, and KLK14,

respectively. The tables describe the mean, range, and percentile of the mRNA

expressions of the KLKs in all the groups in the cohort.

Table 4.2. Descriptive statistics of KLK6 mRNA expression.

Variables Mean± SEb Range Percentile
25th Median 75th

KLK6 mRNA in
normal controls
(RQUa; n=12)

1.264±0.2780 0.3157-3.909 0.5967 1.159 1.610

KLK6 mRNA in newly
diagnosed ALL patients

(RQUa; n=19)
0.5554±0.1351 0.01506-2.44 0.2343 0.3135 0.7055

KLK6 mRNA in ALL
patients after one

month of chemotherapy
(RQUa; n=19)

0.6862±0.1403 0.03033-2.440 0.1337 0.6402 1.062

KLK6 mRNA in ALL
patients after three

months of
chemotherapy
(RQUa; n=19)

0.5260±0.1080 0.02622-1.749 0.1903 0.3092 0.6492

a Relative Quantification Unit; b Standard Error of the mean
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Table 4.3. Descriptive statistics of KLK10 mRNA expression.

Variables Mean± SEb Range Percentile
25th Median 75th

KLK10 mRNA in
normal controls
(RQUa; n=12)

1.362±0.3585 0.2934-4.629 0.5126 0.9609 1.688

KLK10 mRNA in
newly diagnosed

ALL patients
(RQUa; n=19)

0.316±0.071 0.0202-1.134 0.0884 0.2089 0.5038

KLK10 mRNA in
ALL patients after

one month of
chemotherapy
(RQUa; n=19)

0.2375±0.0799 0.0056-1.496 0.02337 0.08367 0.3016

KLK10 mRNA in
ALL patients after

three months of
chemotherapy
(RQUa; n=19)

0.5793±0.0927 0.06125-1.538 0.2484 0.5288 0.7224

a Relative Quantification Unit; b Standard Error of the mean

Table 4.4. Descriptive statistics of KLK14 mRNA expression.

Variables Mean± SEb Range Percentile
25th Median 75th

KLK14 mRNA in
normal controls
(RQUa; n=12)

1.906 ±0.5761 0.091-6.197 0.3935 1.155 3.455

KLK14 mRNA in
newly diagnosed

ALL patients
(RQUa; n=19)

0.2623±0.07146 0.0208-1.358 0.0572 0.1733 0.3873

KLK14 mRNA in
ALL patients after

one month of
chemotherapy
(RQUa; n=19)

0.0782 ±0.0152 0.00937-0.2119 0.01953 0.05153 0.1341

KLK14 mRNA in
ALL patients after

three months of
chemotherapy
(RQUa; n=19)

0.1457±0.04312 0.00676-0.5402 0.01700 0.04612 0.2701

a Relative Quantification Unit; b Standard Error of the mean
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4.7 Correlations between the continuous variables in ALL patients

The data from Table 4.5, Table 4.6, and Table 4.7 demonstrate the

findings of Spearman’s correlation coefficient analysis of KLK6, KLK10, and

KLK14 expressions at the mRNA levels and the continuous variables in newly

diagnosed ALL patients. The mRNA expression levels were not significantly

correlated with patient age, lymphocyte count, WBC, and serum LDH

concentration. Except for KLK14 mRNA level was negatively correlated with

WBC (rs=-0.6, p=0.007). This investigation also observed a positive relationship

between WBC and ALL patients’ lymphocyte count (rs=0.83, p ˂0.0001), and the

patient's age and serum LDH level (rs=0.71, p ˂0.001).
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Table 4.5. Correlations between KLK6 mRNA expression and the

continuous variables in newly diagnosed ALL patients.

Variables KLK6
mRNA
(n=19)

Age

(n=23)

Lymphocytes

(n=23)

WBCb

(n=23)

LDHc

(n=19)
KLK6 mRNA

rsa

95% CI

p-Value

0.16 -0.17 -0.17 -0.31
-0.3338

to
0.5796

-0.5863
to

0.3248

-0.5892
to

0.3208

-0.7042
to

0.2390
0.52 0.5 0.49 0.25

Age
rsa

95% CI

p-Value

0.16 -0.48 -0.26 0.71
-0.3338

to
0.5796

-0.7516
to

-0.07408

-0.6148 to
0.1837

0.3705
to

0.8849
0.52 0.02

*
0.23 0.001

**
Lymphocytes

rsa

95% CI

p-Value

-0.17 -0.48 0.83 -0.5
-0.5863

to
0.3248

-0.7516
to

-0.07408

0.6279
to

0.9275

-0.7830
to

-0.04422
0.5 0.02

*
˂0.0001

****
0.03

*
WBCb

rsa

95% CI

p-Value

-0.17 -0.26 0.83 -0.24
-0.5892

to
0.3208

-0.6148
to

0.1837

0.6279
to

0.9275

-0.6345
to

0.2543
0.49 0.23 ˂0.0001

****
0.32

LDHc

rsa

95% CI

p-Value

-0.31 0.71 -0.5 -0.24
-0.7042

to
0.2390

0.3705
to

0.8849

-0.7830
to

-0.04422

-0.6345
to

0.2543
0.25 0.001

**
0.03

*
0.32

a Spearman’s Correlation Coefficient; b White Blood Cells; c Lactate Dehydrogenase
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Table 4.6. Correlations between KLK10 mRNA expression and the

continuous variables in newly diagnosed ALL patients.

Variables KLK10
mRNA
(n=19)

Age

(n=23)

Lymphocytes

(n=23)

WBCb

(n=23)

LDHc

(n=19)
KLK10 mRNA

rsa

95% CI

p-Value

-0.09 -0.10 -0.31 -0.14
-0.5339

to
0.3913

-0.5409
to

0.3830

-0.6806
to

0.1768

-0.6056
to

0.3948
0.71 0.68 0.19 0.6

Age
rsa

95% CI

p-Value

-0.09 -0.48 -0.26 0.71
-0.5339

to
0.3913

-0.7516
to

-0.07408

-0.6148
to

0.1837

0.3705
to

0.8849
0.71 0.02

*
0.23 0.001

**
Lymphocytes

rsa

95% CI

p-Value

-0.10 -0.48 0.83 -0.50
-0.5409

to
0.3830

-0.7516
to

-0.07408

0.6279
to

0.9275

-0.7830
to

-0.04422
0.68 0.02

*
˂0.0001

****
0.03

*
WBCb

rsa

95% CI

p-Value

-0.31 -0.26 0.83 -0.24
-0.6806

to
0.1768

-0.6148
to

0.1837

0.6279
to

0.9275

-0.6345
to

0.2543
0.19 0.23 ˂0.0001

****
0.32

LDHc

rsa

95% CI

p-Value

-0.14 0.71 -0.50 -0.24
-0.6056

to
0.3948

0.3705
to

0.8849

-0.7830
to

-0.04422

-0.6345
to

0.2543
0.6 0.001

**
0.03

*
0.32

a Spearman’s Correlation Coefficient; b White Blood Cells; c Lactate Dehydrogenase
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Table 4.7. Correlations between KLK14 mRNA expression and the

continuous variables in newly diagnosed ALL patients.

Variables KLK14
mRNA
(n=19)

Age

(n=23)

Lymphocytes

(n=23)

WBCb

(n=23)

LDHc

(n=19)
KLK14 mRNA

rsa

95% CI

p-Value

0.06 -0.33 -0.60 -0.31
-0.4202

to
0.5087

-0.6877
to

0.1640

-0.8314
to

-0.1816

-0.7091
to

0.2297
0.82 0.17 0.007

**
0.23

Age
rsa

95% CI

p-Value

0.06 -0.48 -0.26 0.71
-0.4202

to
0.5087

-0.7516
to

-0.07408

-0.6148
to

0.1837

0.3705
to

0.8849
0.82 0.02

*
0.23 0.001

**
Lymphocytes

rsa

95% CI

p-Value

-0.33 -0.48 0.83 -0.50
-0.6877

to
0.1640

-0.7516
to

-0.07408

0.6279
to

0.9275

-0.7830
to

-0.04422
0.17 0.02

*
˂0.0001

****
0.03

*
WBCb

rsa

95% CI

p-Value

-0.60 -0.26 0.83 -0.24
-0.8314

to
-0.1816

-0.6148
to

0.1837

0.6279
to

0.9275

-0.6345
to

0.2543
0.007

**
0.23 ˂0.0001

****
0.32

LDHc

rsa

95% CI

p-Value

-0.31 0.71 -0.50 -0.24
-0.7091

to
0.2297

0.3705
to

0.8849

-0.7830
to

-0.04422

-0.6345
to

0.2543
0.23 0.001

**
0.03

*
0.32

a Spearman’s Correlation Coefficient; b White Blood Cells; c Lactate Dehydrogenase
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4.8 ROC curves for sensitivity and specificity of the KLKs

Besides quantification of mRNA expression of KLK6, KLK10, and KLK14;

the diagnostic accuracy of the genes in ALL was evaluated by receiver operating

characteristic (ROC) analysis. The area under the ROC curve (AUC) was

achieved from the plotting of sensitivity versus (1-specificity), and the optimal

diagnostic cutoff point was revealed.

4.8.1 Diagnostic evaluation of KLK6 mRNA expression in ALL

The ROC curve in Figure 4.7 illustrated that KLK6 mRNA expression

could very efficiently discriminate ALL from normal counterparts (AUC =0.822,

95% CI=0.6735-0.9713, SE=0.076, p=0.0029). The ROC curve analysis revealed

that 0.7614 RQU is the best diagnostic cutoff value. The sensitivity of this cutoff

value was 84.21%, whereas the method's specificity was 75.0%.

Figure 4.7. ROC curve for KLK6 mRNA expression.

Receiver operating characteristic (ROC) analysis for quantified KLK6 mRNA expression.
It reveals that KLK6 can be applied to diagnose ALL and discriminate it from normal
controls; AUC, Area Under Curve.
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4.8.2 Diagnostic evaluation of KLK10 mRNA expression in ALL

The ROC curve in Figure 4.8 illustrated that KLK10 mRNA expression

could very efficiently discriminate ALL from normal counterparts (AUC =0.886,

95% CI=0.7720-1.000, SE=0.0582, p=0.0004). The ROC curve analysis revealed

that 0.5399 RQU is the best diagnostic cutoff value. The sensitivity of this cutoff

value was 89.47%, whereas the method's specificity was 75.0%.

Figure 4.8. ROC curve for KLK10 mRNA expression.

Receiver operating characteristic (ROC) analysis for quantified KLK10 mRNA expression.
It reveals that KLK10 can be applied to diagnose ALL and discriminate it from normal
controls; AUC, Area Under Curve.

4.8.3 Diagnostic evaluation of KLK14 mRNA expression in ALL

The ROC curve in Figure 4.9 illustrated that KLK14 mRNA expression

could very efficiently discriminate ALL from normal counterparts (AUC =0.851,

95% CI=0.7087-0.9931, SE=0.0726, p=0.0012). The ROC curve analysis
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Figure 4.9. ROC curve for KLK14 mRNA expression.

Receiver operating characteristic (ROC) analysis for quantified KLK14 mRNA expression. It
reveals that KLK14 can be applied to diagnose ALL and discriminate it from normal controls;
AUC, Area Under Curve.

revealed that 0.5402 RQU is the best diagnostic cutoff value. The sensitivity of

this cutoff value was 94.74%, whereas the method's specificity was 66.67%.

4.9 Logistic regression analysis for the KLKs’ mRNA expression

To further investigate the discriminatory significance of KLK6, KLK10,

and KLK14 mRNA expression, their quantified expression was used as a

continuous variable to construct a univariate logistic regression model to predict

the presence of ALL.
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4.9.1 Logistic regression model for KLK6 mRNA expression

Univariate logistic regression analysis demonstrated that patients with

reduced KLK6 mRNA expression levels establish a significant prognostic marker

for ALL (crude odds ratio [OR]=0.2289, 95% CI=0.04428-0.7544, p=0.0115).

4.9.2 Logistic regression model for KLK10 mRNA expression

Univariate logistic regression analysis demonstrated that patients with

reduced KLK10 mRNA expression levels establish a significant prognostic

marker for ALL (crude odds ratio [OR]=0.0228, 95% CI= 0.0008851-0.2299,

p˂0.0001).

4.9.3 Logistic regression model for KLK14 mRNA expression

Univariate logistic regression analysis demonstrated that patients with

reduced KLK14 mRNA expression levels establish a significant prognostic

marker for ALL (crude odds ratio [OR]=0.0716, 95% CI=0.003912-0.4610,

p=0.0002).
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Chapter Five: Discussion

Biomarkers are biomolecules detected in body fluids or tissues that may

indicate normal or pathological activity (6). Biomarkers are classified into many

categories based on their use and molecular changes. Tumor biomarkers indicate

the presence of cancer, which could be nucleic acids, proteins, cells, metabolites,

or processes such as proliferation, angiogenesis, or apoptosis. They could serve

as diagnostic, prognostic, and/or monitoring biomarkers (218). Acute

lymphoblastic leukemia (ALL) is the most common hematological malignancy

diagnosed in children. In ALL, precursor lymphoblasts are obstructed at an early

stage of differentiation, proliferate quickly, and displace normal bone marrow

hematopoietic cells (57). Despite the favorable survival rates of childhood ALL,

it is essential to have sensitive and specific molecular biomarkers for the

diagnosis and prognosis of the disease; assign better risk classification, and

consequently better clinical results. Accumulative evidence robustly

demonstrated that kallikrein-related peptidases have a wide interest in clinical

oncology (219). They serve as diagnostic and/or prognostic biomarkers in diverse

human cancers such as prostate (7, 220), breast (221, 222), ovarian (223, 224),

lung (225), colorectal (175, 193), and gastric cancer (226). Nevertheless, the

research into the effects of KLKs on cancer is currently ongoing, and the

investigation of other members of the KLK group in hematological malignancies

has not been tested.
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5.1 Kallikrein-related peptidases in hematological malignancies

Human kallikrein-related peptidases designate a group of fifteen functional

genes of serine proteases on chromosome 19q13.3-13.4. Few papers have been

published investigating kallikreins in hematological malignancies: in 2004,

Roman-Gomez, J. et al for the first time found that KLK10 expression was

strongly reduced at mRNA level in precursor B-cell ALL and 69% of samples

diagnosed with ALL. Moreover, the study found loss of expression in KLK10 due

to hypermethylation in ALL cell lines compared to normal cell lines and proposed

it as a factor for an unfavorable prognosis in childhood ALL (188). Down

expression of KLK10 in ALL has been reported in other studies (123, 154, 227,

228). In 2014, Kashuba demonstrated that chronic lymphocytic leukemic cells

express constituents for the kinin-kallikrein system signaling pathway. In the

study kininogen, an important protein of the kinin-kallikrein system was

overexpressed and associated with CLL prognosis (229). In 2015, for the first

time, KLKB1 expression was investigated by Adamopoulos et al who discovered

a significant increase in KLKB1 mRNA expression in CLL patients and very

efficiently distinguished from healthy blood donors (230). In 2016, KLK5-9

transcripts were analyzed in distinct cancerous human tissues including leukemia

via nested reverse transcription PCR (177). In 2016, for the first time, KLK14

expression was examined by Kontos et al found a strong overexpression of
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KLK14 mRNA in CLL patients than in the normal population and related to poor

prognosis in CLL (231).

Treatment of pediatric ALL patients has shown vast progress over the past

decades, increasing considerations of remission rates and prognosis of the

patients. Nevertheless, some patients regardless of presenting favorable clinical

characteristics may be overtreated or suffered from unpleasant outcomes (66,

232). The discovery of new prognostic biomarkers is essential to predict the

patients’ outcomes and monitor their response to therapy.

Thus, the present study aimed to quantify mRNA expression levels of the

kallikrein-related peptidases: KLK6, KLK10, and KLK14 in newly diagnosed

childhood ALL patients and healthy control blood donors utilizing an accurate

and sensitive real-time qPCR predicated on SYBR Green chemistry. Besides, to

assess their potential diagnostic and/or prognostic biomarker suitability for acute

lymphoblastic leukemia. In addition, to evaluate alterations in mRNA expression

levels of KLK6, KLK10, and KLK14 in childhood ALL patients who received one

month and then three months of chemotherapy.
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5.2 Evaluation of KLK6 mRNA expression as a potential biomarker in

pediatric ALL

In this study, the differential diagnostic usefulness of the KLK6 mRNA

expression was investigated using qPCR. This study found that KLK6 mRNA

expression levels were considerably reduced in ALL patients compared to normal

blood samples (p=0.002; Figure 4.4; Table 4.2). The differential diagnostic value

was demonstrated via ROC curve analysis (AUC =0.822, 95% CI=0.6735-

0.9713, SE=0.076, p=0.0029; Figure 4.7). The ROC curve results illustrated that

KLK6 mRNA expression could very efficiently discriminate ALL from normal

counterparts, the optimal diagnostic cutoff value was revealed to be 0.7614 RQU.

Using this cutoff value, the method's sensitivity was 84.21%, and its specificity

was 75.0%. This establishes that KLK6 mRNA expression could serve as a

diagnostic biomarker for ALL. Univariate logistic regression analysis confirmed

that patients with reduced KLK6 mRNA expression are more possible to suffer

from ALL ([OR]=0.2289, 95% CI=0.04428-0.7544, p=0.0115). This establishes

that a reduction in KLK6 mRNA expression could be a prognostic biomarker for

ALL. This investigation also found that KLK6 mRNA expression levels were

significantly downregulated in ALL patients after one month and after three

months of chemotherapy compared to their levels in normal blood samples

(p=0.0292 and p=0.0038 respectively; Figure 4.4, Table 4.2). The expression

level of KLK6 mRNA in ALL patients after one month of chemotherapy was

overregulated compared to their level in the patients on disease diagnosis
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(p=0.4413; Figure 4.4, Table 4.2). Whereas the KLK6 mRNA expression level in

ALL patients after three months of chemotherapy was slightly downregulated

compared to their level in the patients on disease diagnosis (p=0.6794; Figure 4.4,

Table 4.2).

KLK6 mRNA expression is differentially regulated and contributed to

unfavorable prognostic tumor biomarkers, for instance, downregulation of KLK6

mRNA expression was detected in breast cancer, and contributed as a prognostic

tumor marker depending on the cancer grade (174, 233, 234). KLK6 protein has

a function in the invasion and metastasis of malignant tumors (235). KLK6

mRNA and protein overexpression was found as potential prognostic indicators

of gastric malignancy (226, 236). KLK6 mRNA and protein are expressed in

ovarian cancer. This protein overexpression was found as a diagnostic and

prognostic biomarker of ovarian cancer (237, 238). KLK6 mRNA and protein

overexpression was shown as significant screening and prognostic biomarkers in

colorectal adenocarcinoma (175, 239, 240). KLK6 protein is overexpressed and

considered a poor prognostic biomarker in non-small cell lung cancer (225). In

2016, KLK5-9 transcripts were analyzed in distinct cancerous human tissues

including leukemia via nested reverse transcription PCR (177).

KLK6 is a serine protease, that involved a proteolytic cascade. CNS is rich

with KLK6 cleaving the amyloid precursor protein in perineuronal net places and

the extracellular matrix and it is a potential element of Alzheimer’s disease
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pathogenesis (183). KLK6 protein expression is associated with immune cell

survival by a molecular mechanism through stimulation of protease activated

receptor-1 (PAR-1) in neurons (241, 242). PAR-1 was suggested to be significant

for a variety of immunological responses that depend on homeostasis

maintenance and immune clearance apoptosis (242).

Protease activated receptor-1 (PAR-1) is a transmembrane G-coupled

prototypic receptor that is stimulated by thrombin and other serine proteases

including kallikreins (KLK5, KLK6, and KLK14) is being correlated with

various physiological and pathological processes (243, 244). PAR-1 plays

potential roles in promoting tumor cell proliferation, infiltration, and metastasis,

stimulated by tumor-derived serine proteases and matrix metalloproteinases (245,

246). PAR-1 is upregulated in a variety of human cancers including leukemia,

colon, prostate, breast, and ovarian cancer (247). PAR-1 is drastically

overexpressed in aggressive acute leukemia subtypes and influences blast cells to

egress from bone marrow to peripheral blood (248). PAR-1 expression denotes

an unfavorable prognostic biomarker at diagnosis of childhood ALL (249). PAR-

1 is involved in leukemogenesis as well as it has an ultimate role in the eradication

of primitive leukemia stem cells in AML (250).

It was examined that active KLKs produced by tumors and inflamed tissues

can have hormonal features and that their proteolytic ability is regulated by

proteinase inhibitors that can be found in cancer-related fluids (251). The
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potential role of KLKs in hormone-processing was suggested; it was reported that

KLK5-8, and KLK10-14, are released in the human pituitary gland, located with

the growth hormone, and KLK5, KLK6, and KLK14 potentially contribute to this

hormone's proteolytic degradation into functional fragments (252).

5.3 Evaluation of KLK10 mRNA expression as a potential biomarker in

pediatric ALL

In this study, the differential diagnostic usefulness of the KLK10 mRNA

expression was investigated using qPCR. This study found that KLK10 mRNA

expression levels were considerably reduced in ALL patients compared to normal

blood samples (p=0.0001; Figure 4.5; Table 4.3). The differential diagnostic

value was demonstrated via ROC curve analysis (AUC =0.886, 95% CI=0.7720-

1.000, SE=0.0582, p=0.0004; Figure 4.8). The ROC curve results illustrated that

KLK10 mRNA expression could very efficiently discriminate ALL from normal

counterparts, the optimal diagnostic cutoff value was revealed to be 0.5399 RQU.

Using this cutoff value, the method's sensitivity was 89.47%, and its specificity

was 75.0%. This establishes that KLK10 mRNA expression could serve as a

diagnostic biomarker for ALL. Univariate logistic regression analysis confirmed

that patients with reduced KLK10 mRNA expression are more possible to suffer

from ALL ([OR]=0.0228, 95% CI=0.0008851-0.2299, p˂0.0001). This

establishes that a reduction in KLK10 mRNA expression could be a prognostic

biomarker for ALL. This investigation also found that KLK10 mRNA expression
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levels were significantly downregulated in ALL patients after one month and after

three months of chemotherapy compared to their levels in normal blood samples

(p˂0.0001 and p=0.0175 respectively; Figure 4.5, Table 4.3). The expression

level of KLK10 mRNA in ALL patients after one month of chemotherapy was

slightly downregulated compared to their level in the patients on disease

diagnosis (p=0.4413; Figure 4.5, Table 4.3). Whereas the KLK10 mRNA

expression level in ALL patients after three months of chemotherapy was

overregulated compared to their level in the patients on disease diagnosis

(p=0.0602; Figure 4.5, Table 4.3).

In 1996, the KLK10 gene was characterized as a possible tumor-suppressor

gene; and its down expression in breast cancer cell lines was observed (253).

KLK10 mRNA expression was analyzed in breast tissues by in situ hybridization;

found further supportive results of the decrease of expression in breast malignant

tissues compared to normal samples (189). This down-expression was proposed

due to KLK10 exon-3 methylation (254). KLK10 is associated with four CpG

islands, the largest one is located on exon 3 of the gene (255). These studies linked

CpG island hypermethylation and down expression of KLK10 at both mRNA and

protein levels (256). KLK10 transcriptional silencing is associated with

hypermethylation of CpG islands within promoter or gene coding regions. (254).

KLK10 inhibits carcinogenesis and is considered a tumor suppressor gene. It was

examined that hypermethylation of KLK10 CpG island plays a crucially
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significant role in tumor-specific loss and down expressions of KLK10 mRNA

and protein in ALL, breast, and prostate cancers (130, 188, 254, 257, 258). In

early breast cancer patients, methylation of the gene's third exon possessed a

prognostic value (258). Reduction in KLK10 mRNA expression in precursor B-

cell ALL was proposed as a factor for an unfavorable prognosis in ALL (188).

Previous studies also found that the KLK10 gene is over-expressed by steroid

hormones via binding to their receptors which act as a binding molecule to

activate or suppress transcription (186). KLK10 protein overexpression is

observed in ovarian tumors that correlates to its elevation in the serum and

possesses a significant value as tissue and serological markers for diagnosis,

prognosis, and monitoring of ovarian cancer (195, 224, 259-261). It was reported

that KLK10 overexpression could serve as a diagnostic and prognostic biomarker

for pancreatic and colorectal cancers (193, 194, 262-264). It was observed that

overexpression of KLK10 mRNA is an independent biomarker for predicting poor

prognosis in gastric cancer, whereas urinary KLK10 protein could also play a

non-invasive marker to predict inoperable and incurable gastric cancer (265,

266).
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5.4 Evaluation of KLK14 mRNA expression as a potential biomarker in

pediatric ALL

In this study, the differential diagnostic usefulness of the KLK14 mRNA

expression was investigated via qPCR. This study found that KLK14 mRNA

expression levels were considerably reduced in ALL patients compared to normal

blood samples (p=0.0007; Figure 4.6; Table 4.4). The differential diagnostic

value was demonstrated via ROC curve analysis (AUC =0.851, 95% CI=0.7087-

0.9931, SE=0.0726, p=0.0012; Figure 4.9). The ROC curve results illustrated that

KLK14 mRNA expression could very efficiently discriminate ALL from normal

counterparts, the optimal diagnostic cutoff value was revealed to be 0.5402 RQU.

Using this cutoff value, the method's sensitivity was 94.74%, and its specificity

was 66.67%. This establishes that KLK14 mRNA expression could serve as a

diagnostic biomarker for ALL. Univariate logistic regression analysis confirmed

that patients with reduced KLK14 mRNA expression are more possible to suffer

from ALL ([OR]=0.0716, 95% CI=0.003912-0.4610, p=0.0002). This establishes

that a reduction in KLK14 mRNA expression could be a prognostic biomarker for

ALL. This investigation also found that KLK14 mRNA expression levels were

significantly downregulated in ALL patients after one month and three months of

chemotherapy compared to their levels in normal blood samples (p˂0.0001 and

p˂0.0001 respectively; Figure 4.6, Table 4.4). The expression level of KLK14

mRNA in ALL patients after one month of chemotherapy was significantly

downregulated compared to their level in the patients on disease diagnosis
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(p=0.0039; Figure 4.6, Table 4.4). The KLK14 mRNA expression level in ALL

patients after three months of chemotherapy was downregulated compared to

their level in the patients on disease diagnosis (p=0.1336; Figure 4.6, Table 4.4).

KLK14 gene is positioned at 19q13.4 within the human kallikrein locus.

KLK14 protein is a serine protease with trypsin-like substrate specificity (198).

KLK14 differential expression was reported as potential diagnostic and/or

prognostic biomarkers in ovarian, breast, testicular, prostate, and colorectal

malignancies. It was reported that KLK14 plays a marker of a promising outcome

of ovarian cancer (196). Elevation of its mRNA level has been implicated with

lower cancer stage, reduced tumor grade, optimal residual tumor size, better

cancer-free survival, and overall survival (108). The National Academy of

Clinical Biochemistry (NACB) Laboratory Medicine Practice has designated

KLK14 as a serum marker with clinical utility in ovarian cancer differential

diagnosis, prognostic prediction, and tumor monitoring with the level of evidence

(LOE) of IV and/or V (267, 268).

It was reported that the downregulation of KLK14 gene expression is a

potential biomarker linked with a poor prognosis for breast cancer (196, 222,

269). It was also assessed that the gene plays a possible independent diagnostic

marker in breast tumor biopsies (270). Furthermore, it was found that KLK14

expression could serve as a predicting biomarker for chemotherapy response in

breast cancer (211). Downregulation of KLK14 gene expression in testicular germ
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cell tumors was observed (192, 271). Quantification of KLK14 mRNA and

protein levels in the cancerous and non-cancerous prostate tissues was found to

be downregulated by androgen receptor signaling and associated with

aggressiveness of the tumor suggesting an unfavorable prognosis of the disease

(272-275). Colonic cancers produce KLK14 protein, which activates protease-

activated receptor-2 (PAR-2) by signaling human colon cancer cells (276). PAR-

2 is a G protein-coupled receptor stimulated by intramolecular binding of a

tethered ligand which is liberated by the proteases, primarily of the serine

protease group including trypsin and kallikreins (KLK2/4/5/6/14) (277). PAR-2

works as a cell surface sensor for various extracellular and cell surface-associated

proteases (278). It was observed that overexpression of KLK14 protein in

cytosolic extracts from colorectal cancer tissues was significantly correlated with

patients’ overall survival, and it was established as a significant prognostic

biomarker in staging and grading of the disease (279). Also, its upregulation at

the mRNA level can be considered a marker of unfavorable prognosis for patients

with colorectal cancer; have discriminatory power between colorectal cancer and

adenoma patients (205). Upregulation of KLK14 mRNA in CLL patients was

observed to be associated with an unfavorable prognosis of the disease (231).
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5.5 Assessment of the correlations between the continuous variables in ALL

patients

The outcomes of the Spearman's correlation coefficient analysis of the

mRNA expression levels of KLK6, KLK10, and KLK14 and the continuous

variables in newly diagnosed ALL patients revealed that there was no significant

correlation between the mRNA expression levels and the patient's age,

lymphocyte count, WBC, and serum LDH concentration. Except for KLK14

mRNA level was negatively correlated with WBC (rs=-0.6, p=0.007). The present

study found a positive relationship between WBC and ALL patients’ lymphocyte

count (rs=0.83, p ˂0.0001). Patients with ALL frequently have an increase in

lymphocytes (280). Also, there was a positive correlation between the patient's

age and serum LDH level (rs=0.71, p ˂0.001). This is in line with past research

on adults (281).

5.6 Limitation and strength of the study

The present investigation has certain limitations as well as some strengths.

A small number of individuals qualified for the inclusion criteria of the study

leads to a decrease in the sample size of the study. Some of the pediatric

individuals refused to participate in the study because venipuncture is an invasive

procedure for children. The study could not continue to follow up the ALL

patients to examine the mRNA expression levels of KLK6, KLK10, and KLK14

after receiving the latter phases of chemotherapy because the duration of the
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present study was limited. A large percentage of samples could not be examined

due to a lack of resources and the high cost of qPCR analyses in our country.

This study was successful to identify between ALL and the control group as

demonstrated by ROC curve analysis, which showed that KLK6, KLK10, and

KLK14 mRNA expression levels have a favorable diagnostic utility in ALL. In

addition, according to univariate logistic regression analysis patients with

downregulated KLK6, KLK10, and KLK14 mRNA expression are more likely to

develop ALL. This establishes that reduction in KLK6, KLK10, and KLK14

mRNA expression could be considerable prognostic biomarkers for ALL. This is

the first analysis to investigate KLK6, KLK10, and KLK14 mRNA expression in

pediatric ALL patient samples after induction and three months of receiving

chemotherapy. Changes in the KLK6, KLK10, and KLK14 expression profiles

after one month and three months of receiving chemotherapy could suggest that

the patients were responding to treatment, and the KLK6, KLK10, and KLK14

expression profiles could have an impact on disease outcome and could be

targeted therapeutically.
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5.7 Conclusions

The results of the present study conclude the followings:

1. The mRNA expression levels of KLK6, KLK10, and KLK14 in ALL patients

were significantly reduced compared to normal blood samples.

2. The mRNA expression levels of KLK6, KLK10, and KLK14 revealed

significant diagnostic value to distinguish ALL patients from normal

counterparts.

3. The reduction in mRNA expression levels of KLK6, KLK10, and KLK14 was

found to be significant prognostic molecular biomarkers for ALL.

4. The mRNA expression of the genes of interest in newly diagnosed childhood

ALL patients was not significantly proportional to patient age, lymphocyte count,

WBC, and serum LDH concentration. Except for KLK14 mRNA level

significantly had a negative correlation with WBC.

5. Expression of KLK6, KLK10, and KLK14 at mRNA levels was significantly

downregulated in ALL patients after one month and three months of receiving

chemotherapy compared to their levels in normal blood samples.

6. Thus, this study suggests that KLK6, KLK10, and KLK14 mRNA expression

levels could be used as molecular biomarkers in the diagnosis and prognosis of

ALL. In addition, the expression profile of the KLKs could be utilized to predict

how well ALL patients respond to chemotherapy.
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5.8 Recommendations

The followings are the suggested additional future research based on the

findings of this study:

1. Further study on a larger scale of ALL patients and normal blood donors are

required to see whether quantification of mRNA expressions of KLK6, KLK10,

and KLK14 in peripheral blood samples could be utilized in clinical practice to

diagnose and predict the presence of ALL.

2. A longer time-schedule follow-up of the patients is required for a more clinical

evaluation of the KLK6, KLK10, and KLK14 mRNA expression for ALL patients'

prognosis and response to chemotherapy.

3. Since mRNA expressions of KLK6 and KLK14 in ALL have not been examined

before, no prognostic cutoff values were suggested. It is required to categorize

their mRNA expression levels and investigate their prognostic significance in

ALL.

4. Since levels of mRNA expression of KLK6, KLK10, and KLK14 in ALL

pediatric patients have been studied for the first time after induction therapy and

three months of chemotherapy, further investigations are required to see whether

the expression profile of the genes of interest could have the potential to influence

disease outcomes and to be therapeutically targeted.
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Appendices

Appendix A. Equipment used in the study.

Equipment Company Origin
Alcohol Pad Sugama China
Aluminum Foil Sanita Lebanon
Analytical Balance Kern Sohn Germany
Biological Safety Cabinet & Clean Benches Thermo Scientific USA
Biophotometer Eppendorf Germany
Blood Transportation Box Krew India
Conical Flasks Pyrex Germany
Deep Freezer (-20 °C) GFL Germany
Deep Freezer (-70 °C) GFL Germany
Deionizer Nanopure Thermo Scientific USA
Digital Camera Canon Japan
Disposable Syringe Set Medical Germany
EDTA Tube VACUTEST Italy
Electronic Stopwatch Optima Japan
Electrophoresis Gel Tank Analytik Jena Germany
Electrophoresis Power Supply Analytik Jena Germany
Eppendorf Tubes Accumax India
Gel Documentation System Cleaver UK
Graduated Cylinder Isolab Germany
Hot Plate Magnetic Stirrer Roth Germany
Ice Maker Scotsman USA
Microcentrifuge VWR Germany
Microwave Sharp UK
Multicentrifuge Heraeus Germany
Nitrile Gloves Avedo safety Greece
Oven Binder Germany
Paint Markers Staedtler Germany
Parafilm Tape Sigma Aldrich USA
PCR Tubes Accumax India
pH-Meter Knick Germany
Precision Micropipettes Eppendorf Germany
Printer Canon Japan
Racks Eppendorf Germany
Refregirated Centrifuge 5417R Eppendorf Germany
Refrigerator (4.0 °C) Haier China
Rotor Gene Q Cycler Qiagen Germany
Spatula Spoon Usbeck Germany
Sterile Cotton LanYuhan China
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Thermal Cycler Applied Biosystems Singapore
Thermometer Memmert Germany
Thermomixer Compact Eppendorf Germany
Tips Accumax India
Tourniquet Indiamart India
UV Sterilisation Cabinet Cleaver UK
UV Transilluminator Cleaver UK
Vertical Autoclave Indiamart India
Vortex Mixer Stuart UK
Water Bath Memmert Germany

Appendix B. Kits and reagents used in the study.

Kits and Reagents Company Origin
2X SuPrimeScript RT Premix (SR-3000) Kit GeNet Bio South Korea
Absolute Ethanol Merck Germany
Agarose Scharlau Spain
Agarose Gel Loading Dye GeNet Bio South Korea
Boric Acid  (MW=61.83 g/mol) Scharlau Spain
Deionized Sterile Distilled Water Bioneer South Korea
DNA Ladder GeNet Bio South Korea
Ethidium Bromide Promega USA
Nuclease-Free Water Ambion USA
OnePCR™ Ultra (PCR Master Mix) Kit GeneDireX USA
Prime PrepTM Blood RNA Extraction Kit GeNet Bio South Korea
Primers Macrogen South Korea
Rotor-Gene SYBR Green PCR Kit Qiagen Germany
EDTA Disodium Salt Dihydrate (MW=372.24 g/mol) Promega USA
Tris Base  (MW=121.14 g/mol) Promega USA
Water, DEPC Treated GeNet Bio South Korea
β-Mercaptoethanol AppliChem Germany
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Appendix C. Ethical committee approval.
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Appendix D. Consent form.
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Appendix E. Questionnaire.
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Appendix F. cDNA synthesis cycling conditions.

Appendix G. Conventional RT-PCR cycling conditions.
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Appendix H. Melting curve analysis.
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Appendix I. Originality report.
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Appendix J. Publications relating to the present project

2021-2022
Impact Factor = 3.061





(AUC=0.851, 95% CI=0.7087-0.9931, SE=0.0726, p=0.0012)
ALL 

(OR=0.2289, 95% CI=0.0557-0.9399, p=0.0115)

(OR=0.0228, 95% CI=0.0008851-0.2299, p ˂0.0001)

(OR=0.0716, 95% CI= 0.003912-0.4610, p=0.0002) ALL
mRNAKLK10KLK14
0.04413p=p=0.0039mRNAKLK60.04413p=
ALLmRNAKLK6KLK14

  0.6794p= p=0.1336    mRNAKLK10
0.0602p= 

 

mRNAKLK6KLK10KLK14
 ALL

mRNAKLK6KLK10KLK14ALL
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80٪
KLKs

19
KLKs

’
PSA/KLK3KLKs
KLKs 

mRNAKLK6KLK10KLK14

 


11523ALL
12

ALLALL
RNAcDNAmRNAKLK6

KLK10KLK14PCR(qRT- PCR) 

mRNAKLK6KLK10KLK14 
 ALL       p=0.002 p=0.0001 

p=0.0007mRNAKLK6KLK10KLK14

0.0292p=p˂0.0001p˂0.0001ALL


0.0038p=p=0.0175p˂0.0001ROC

KLK6KLK10KLK14ALL

(AUC=0.822, 95% CI=0.6735-0.9713, SE=0.076, p=0.0029) 

(AUC=0.886, 95% CI=0.7720-1.000, SE=0.0582, p=0.0004)



 

 

KLK6
KLK10KLK14 

 


 

  






  



2722  2022 1443





p˂0.0001p˂0.0001ALL
0.0038p=

p=0.0175p˂0.0001ROC
mRNAKLK6KLK10KLK14ALL

(AUC=0.822, 95% CI=0.6735-0.9713, SE=0.076, p=0.0029) 

(AUC=0.886, 95% CI=0.7720-1.000, SE=0.0582, p=0.0004)

(AUC=0.851, 95% CI=0.7087-0.9931, SE=0.0726, p=0.0012)    
     

ALL(OR=0.2289, 95% CI=0.0557-0.9399, p=0.0115)

(OR=0.0228, 95% CI=0.0008851-0.2299, p ˂0.0001)

(OR=0.0716, 95% CI= 0.003912-0.4610, p=0.0002) ALL
mRNAKLK10KLK14

0.04413p= p=0.0039
mRNAKLK6  0.04413p=   ALL     

 mRNAKLK6 KLK14 
0.6794p=  p=0.1336       mRNAKLK10
0.0602p= 

 

   mRNAKLK6 KLK10 KLK14
ALL

mRNAKLK6KLK10KLK14
ALL

 

 



(ALL)


 80    


    KLKs  
             

19 KLKs


    PSA/KLK3 
KLKs

KLKs 

 

mRNAKLK6KLK10KLK14
            


 

 


         1 15  23 

ALL12
       ALL        

             RNA
  cDNA  mRNAKLK6

KLK10KLK14quantitative real-time PCR(qRT- PCR)

mRNAKLK6KLK10KLK14ALL
p=0.002p=0.0001p=0.0007

mRNAKLK6KLK10KLK14ALL
0.0292p= 

 

 




KLK6KLK10KLK14

 









  


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