

Quantitative Analysis of Kallikrein-Related Peptidases *KLK6*, *KLK10*, and *KLK14* Gene Expression in Childhood Acute Lymphoblastic Leukemia

A Thesis Submitted to the Council of the College of Medicine-University of Sulaimani in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Clinical Chemistry

By

Shwan Majid Ahmad

MSc in Chemistry with Medicinal Chemistry

Supervised by Assistant Professor Dr. Basima S. Ahmed Ph.D. in Clinical Biochemistry

Co-supervised by

Assistant Professor Dr. Karzan G. Khidhir Ph.D. in Molecular Biology and Genetics

2722 K

2022 AD

1443 H

Student declaration

I the undersigned, Ph.D. student declare that this thesis entitled "Quantitative Analysis of Kallikrein-Related Peptidases *KLK6*, *KLK10*, and *KLK14* Gene Expression in Childhood Acute Lymphoblastic Leukemia" is my original effort and has never been performed in any other university and that all resources of materials have been duly acknowledged.

Shwan Majid Ahmad

MSc in Chemistry with Medicinal Chemistry- University of Glasgow Date: 01/06/2022

Supervisors' certification

We certify that this thesis entitled "Quantitative Analysis of Kallikrein-Related Peptidases *KLK6*, *KLK10*, and *KLK14* Gene Expression in Childhood Acute Lymphoblastic Leukemia" accomplished by (Shwan Majid Ahmad), was created under our direction at the Department of Biochemistry, College of Medicine, University of Sulaimani in partial completion of the criteria for the degree of Doctor of Philosophy (Ph.D.) in Clinical Chemistry.

Assistant Professor **Dr. Basima Sadiq Ahmed** Ph.D. in Clinical Biochemistry Department of Biochemistry and Clinical Chemistry College of Pharmacy University of Sulaimani

Assistant Professor **Dr. Karzan Ghafur Khidhir** Ph.D. in Molecular Biology and Genetics Department of Biology College of Science University of Sulaimani

In view of the available recommendations, I forward this thesis for debate by the examining committee.

Assistant Professor **Dr. Shirwan Hamasalih Omer** MSc, Ph.D. in Clinical Neurophysiology Dean of the College of Medicine Date: 24 /07/2022

Examination committee certification

We certify that we have read the thesis entitled "Quantitative Analysis of

Kallikrein-Related Peptidases KLK6, KLK10, and KLK14 Gene Expression

in Childhood Acute Lymphoblastic Leukemia", prepared by (Shwan Majid

Ahmad), and as members of the examining committee discussed its content with

the student, it meets the standards of a thesis in partial fulfillment for the degree

of Doctor of Philosophy (Ph.D.) in Clinical Chemistry.

Dr. Salar Adnan Ahmed

Professor of Clinical Biochemistry College of Medicine- Hawler Medical University (Chairman)

Dr. Karim Jalal Karim Assist. Prof. of Genetics and Molecular Biology Faculty of Science and Health- Koya University (Member) Dr. Ali Ibrahim Mohammed

Assist. Prof. of Hematopathology College of Medicine-University of Sulaimani (Member)

Dr. Sadat Abdulla Aziz Assist. Prof. of Cell Molecular Physiology College of Veterinary Medicine- University of Sulaimani (Member)

Dr. Namir Ghanim Al-Tawil Professor of Community Medicine College of Medicine- Hawler Medical University (Member)

Approved by the Council of the College of Medicine.

Assistant Professor **Dr. Shirwan Hamasalih Omer** MSc, Ph.D. in Clinical Neurophysiology Dean of the College of Medicine Date: /09/2022

Dedication

I ask Allah Almighty to accept this study with His forgiveness for mistakes I have ever made

Dedicate to;

- The Prophet of Allah; Muhammad (Peace and Blessings of Allah be upon him)
- \circ My Father; to whom I ask Allah to rest his soul in Paradise
- \circ My Merciful Mother, the Sun in my Life
- $\circ\,$ My Lovely Sisters, the Flowers in the same Garden
- \circ To every candle that burns itself to enlighten the way for others

Acknowledgments

In the Name of Allah, Most Gracious, Most Merciful

Praise be to **Allah**, the Almighty, for helping me with His Kindness and Mercy to accomplish this study.

I would like to express my gratitude and admiration for my supervisors: Assistant Professor **Dr. Basima Sadiq Ahmed** and Assistant Professor **Dr. Karzan Ghafur Khidir**, for their valuable encouragement and efforts in supervising this thesis.

All respect and thanks to the **Deanery** of **College of Medicine**, the **Chairman** of the **Biochemistry Department**, and all my esteemed **teachers**, **colleagues**, and the **staff** working at the college for their support through my postgraduate study.

My deepest acknowledgement and thanks to the head, the doctors, the nurses, and all the staff working at **Hiwa Cancer Hospital**, especially to the staff at Pediatric Department, Biochemistry Laboratory, Hematology Laboratory, Flowcytometry Laboratory, and Molecular Biology Laboratory; great gratitudes to **Dr. Lana Anwar Tahir**, **Dr. Dana Ahmed Abdullah**, **Dr. Muhammed Abdulwahab**, **Mr. Nawzad Omer Ahmad**, **Dr. Sozan**, **Mr. Alan**, **Dr. Kani**, **Dr. Zardasht**, **Dr. Dashti**, **Dr. Ali**, **Mr. Bryar**, **Mr. Salah**, **Mr. Omed**, **Mr. Hersh**, **Mr. Thamir**, and **Mr. Rizgar** for their cooperation and assistance in gathering cases, samples, and data, also allowed me to conduct the qPCR assays at the Molecular Biology Laboratory.

My endless thanks to all the pediatric patients and healthy volunteers who were generous to participate in this study.

My heartfelt appreciation to the head and staff of **Kurdistan Institution for Strategic Studies** for their kindness and continuous support in where the core of this research project has been performed; my special thanks to **Mr. Bahez Osman**.

My deepest thanks would go to my honorable **family**, **my dear mother**, **and my lovely sisters** for their patience and supports throughout the years of my studies.

The last but not least, I would like to thank all whose names I have not mentioned for their assistance in performing this study.

Shwan Majid Ahmad

Abstract

Background: Acute lymphoblastic leukemia (ALL) is the most widely diagnosed pediatric cancer. It is caused by the rapid proliferation of immature lymphoid in the blood, bone marrow, and other tissues. In a five-year survival rate, more than 80% of pediatric patients are cured. Despite high survival rates, sensitive and specific molecular biomarkers are required for cancer diagnosis and prognosis, assignment of better risk stratification, and therapeutic outcomes for childhood ALL. Human kallikrein relatedpeptidases (KLKs) are a family of fifteen unique released serine proteases that characterize the human genome's longest uninterrupted cluster located on chromosome 19. KLKs are present in a range of tissues and bodily fluids, where they influence normal physiological function. The aberrant expression of various kallikrein-related peptidases has been related to diverse diseases and cancers. The potential of kallikreinrelated peptidases in clinical oncology has been recognized. A very well-known member of the KLK family with clinical relevance is the prostate-specific antigen (PSA/KLK3) screening test. However, molecular analysis of other members of the KLK family in hematological malignancies is new, and investigation into the involvement of KLKs in cancer is currently ongoing.

Objectives: This research aimed to determine mRNA expression levels of *KLK6*, *KLK10*, and *KLK14* as potential biomarkers for diagnosis and/or prognosis of childhood ALL, and to assess the effect of chemotherapy on their expression profile after one month and three months of receiving chemotherapy.

Materials and Methods: This investigation was a prospective, analytical, observational, and case-control study. The participants were children aged 1 to 15 years, including 23 patients who were admitted to the Pediatric Department in Hiwa Cancer Hospital, Sulaimaniyah, Kurdistan Region of Iraq, and they were newly diagnosed with ALL. Also, healthy pediatric volunteers (n=12) were selected as the control group. Blood samples were collected from leukemic patients at three different times: at diagnosis with ALL, following one month, and three months of receiving chemotherapy. Total RNA was extracted from blood samples, followed by cDNA

synthesis, then mRNA expression levels of *KLK6*, *KLK10*, and *KLK14* were analyzed using quantitative real-time PCR (qRT-PCR).

Results: mRNA expression levels of *KLK6*, *KLK10*, and *KLK14* in blood samples from pediatric ALL patients were significantly downregulated compared to healthy blood donors (p=0.002, p=0.0001, and p=0.0007 respectively). KLK6, KLK10, and KLK14 mRNA expression levels were significantly downregulated in ALL patients after one month of receiving chemotherapy compared to their levels in normal blood samples (p=0.0292, p 0.0001, and p 0.0001 respectively). The genes' expression was also significantly downregulated in ALL patients who received three months of chemotherapy compared to their levels in normal blood samples (p=0.0038, p=0.0175, and p 0.0001 respectively). ROC curve analysis revealed the significant diagnostic value of the KLK6, KLK10, and KLK14 expression to discriminate ALL patients from normal counterparts (AUC=0.822, 95% CI=0.6735-0.9713, SE=0.076, p=0.0029), (AUC=0.886, 95% CI=0.7720-1.000, SE=0.0582, p=0.0004), and (AUC=0.851, 95% CI=0.7087-0.9931, SE=0.0726, p=0.0012) respectively. Univariate logistic regression analysis demonstrated that the three genes could be used as prognostic biomarkers for ALL (OR=0.2289, 95% CI=0.0557-0.9399, *p*=0.0115), (OR=0.0228, 95% CI=0.0008851-0.2299, p 0.0001), and (OR=0.0716, 95% CI= 0.003912-0.4610, p=0.0002) respectively. In ALL patients who received one-month chemotherapy, KLK10 and KLK14 mRNA expression levels were downregulated compared to newly diagnosed patients (p=0.4413 and p=0.0039 respectively), whereas KLK6 mRNA expression was upregulated (p=0.4413). In ALL patients, KLK6 and KLK14 mRNA expression were downregulated after three months of chemotherapy compared to their level in the patients upon diagnosis (p=0.6794 and p=0.1336 respectively), while *KLK10* mRNA was upregulated (*p*=0.0602).

Conclusions: The present study revealed that *KLK6*, *KLK10*, and *KLK14* mRNA expression is significantly downregulated in pediatric ALL patients compared to the control group, implying that it would have diagnostic relevance. Thus, *KLK6*, *KLK10*, and *KLK14* expressions at the mRNA level could be used as molecular biomarkers in the diagnosis and prognosis of ALL.

Table of contents

Student declarationI
Supervisors' certificationII
Examination committee certificationIII
DedicationIV
Acknowledgments V
AbstractVI
Table of contentsVIII
List of figuresXIII
List of tablesXIV
List of abbreviations XV
Chapter One: Introduction1
1.1 Background of the study1
1.2 Aim and objectives of the study2
Chapter Two: Literature Review4
2.1 Acute Lymphoblastic Leukemia (ALL) 4
2.1.1 Epidemiology of ALL5
2.1.2 Etiology and risk factors of ALL5
2.1.3 Classifications of ALL
2.1.3.1 FAB morphologic classification of ALL6

2.1.3.2 Immunophenotype and cytochemical classification of ALL
2.1.3.3 Cytogenetic and molecular classification of ALL
2.1.4 Clinical features of ALL9
2.1.4.1 Bone marrow failure
2.1.4.2 Neoplastic infiltration involvement10
2.1.4.3 Central nervous system (CNS) manifestation10
2.1.4.4 Skeletal manifestation 10
2.1.4.5 Genital system involvement11
2.1.4.6 Gastrointestinal tract manifestation11
2.1.4.7 Mediastinal manifestation11
2.1.4.8 Biochemical abnormalities12
2.1.5 Diagnosis of ALL12
2.1.6 Prognostic factors and risk stratification of childhood ALL
2.1.7 Treatment of ALL
2.1.7.1 Induction therapy16
2.1.7.2 Consolidation therapy17
2.1.7.3 Maintenance therapy 18
2.1.7.4 CNS-directed therapy 18
2.1.7.5 Supportive care
2.2 Human kallikrein-related peptidases
2.2.1 Gene family of kallikrein-related peptidases

2.2.2 Protein structure of kallikrein-related peptidases
2.2.3 (Patho)physiological expressions and clinical relevance of kallikrein-related peptidases
Chapter Three: Materials and Methods
3.1 Laboratory equipment, kits, and reagents
3.2 Study design and ethical consideration
3.3 Enrollment and consent
3.4 Inclusion and exclusion criteria
3.5 Sample collection
3.6 RNA extraction
3.7 Checking RNA integrity
3.8 cDNA synthesis
3.9 Primers
3.10 Conventional RT-PCR
3.11 Real-time PCR (qPCR)
3.12 Agarose gel electrophoresis 40
3.13 Statistical analysis 41
Chapter Four: Results
4.1 Recruitment and deposition
4.2 Demographic and clinical characteristics of the study cohort
4.3 Total RNA quantity and quality assessment

4.4 cDNA quality assessment
4.5 Quantitative analysis of the KLKs' mRNA expression
4.5.1 Expression of <i>KLK6</i> mRNA in the cohort
4.5.2 Expression of <i>KLK10</i> mRNA in the cohort
4.5.3 Expression of <i>KLK14</i> mRNA in the cohort
4.6 Descriptive statistics of the <i>KLKs</i> ' mRNA expression in the cohort
4.7 Correlations between the continuous variables in ALL patients
4.8 ROC curves for sensitivity and specificity of the <i>KLKs</i>
4.8.1 Diagnostic evaluation of <i>KLK6</i> mRNA expression in ALL
4.8.2 Diagnostic evaluation of <i>KLK10</i> mRNA expression in ALL
4.8.3 Diagnostic evaluation of <i>KLK14</i> mRNA expression in ALL
4.9 Logistic regression analysis for the KLKs' mRNA expression
4.9.1 Logistic regression model for <i>KLK6</i> mRNA expression
4.9.2 Logistic regression model for <i>KLK10</i> mRNA expression
4.9.3 Logistic regression model for <i>KLK14</i> mRNA expression
Chapter Five: Discussion
5.1 Kallikrein-related peptidases in hematological malignancies
5.2 Evaluation of KLK6 mRNA expression as a potential biomarker in pediatric ALL65
5.3 Evaluation of KLK10 mRNA expression as a potential biomarker in pediatric ALL

5.4 Evaluation of <i>KLK14</i> mRNA expression as a potential biomarker in pediatric ALL
5.5 Assessment of the correlations between the continuous variables in ALL patients 74
5.6 Limitation and strength of the study74
5.7 Conclusions
5.8 Recommendations
References
Appendices 111
Appendix A. Equipment used in the study111
Appendix B. Kits and reagents used in the study112
Appendix C. Ethical committee approval113
Appendix D. Consent form114
Appendix E. Questionnaire 115
Appendix F. cDNA synthesis cycling conditions116
Appendix G. Conventional RT-PCR cycling conditions
Appendix H. Melting curve analysis117
Appendix I. Originality report118
Appendix J. Publications relating to the present project
الغلاصهالغلاصه
يوخته

List of figures

Figure 2.1. FAB morphologic appearance of blast cells in ALL	6
Figure 2.2. The human kallikrein locus, gene, and protein features	
Figure 2.3. The functions of kallikreins	
Figure 4.1. Distribution of age groups among ALL subtypes and controls	
Figure 4.2. Agarose gel electrophoresis for total RNA samples	
Figure 4.3. Agarose gel electrophoresis of <i>ACTB</i> PCR products	
Figure 4.4. Bar-graph of <i>KLK6</i> mRNA expression in the cohort	
Figure 4.5. Bar-graph of <i>KLK10</i> mRNA expression in the cohort	50
Figure 4.6. Bar-graph of <i>KLK14</i> mRNA expression in the cohort	
Figure 4.7. ROC curve for <i>KLK6</i> mRNA expression	58
Figure 4.8. ROC curve for <i>KLK10</i> mRNA expression	59
Figure 4.9. ROC curve for <i>KLK14</i> mRNA expression	60

List of tables

Table 2.1. FAB morphologic classification of blast cells in ALL. 7
Table 2.2. Prognostic factors in pediatric ALL. 15
Table 2.3. Deregulation of KLK6, KLK10, and KLK14 in cancers and diseases.
Table 3.1. Reverse-transcription reaction components. 36
Table 3.2. Primers used in PCR amplifications
Table 3.3. Conventional RT-PCR reaction components
Table 3.4. Real-time PCR reaction setup. 39
Table 3.5. Real-time PCR cycling conditions
Table 4.1. Demographic and clinical variables of the study cohort.
Table 4.2. Descriptive statistics of KLK6 mRNA expression
Table 4.3. Descriptive statistics of KLK10 mRNA expression
Table 4.4. Descriptive statistics of KLK14 mRNA expression
Table 4.5. Correlations between KLK6 mRNA expression and the continuous variables
in newly diagnosed ALL patients55
Table 4.6. Correlations between KLK10 mRNA expression and the continuous variables
in newly diagnosed ALL patients56
Table 4.7. Correlations between KLK14 mRNA expression and the continuous variables
in newly diagnosed ALL patients

List of abbreviations

Abbreviation	Stand for
А	Absorbance
ACTB	Beta-actin gene
ALL	Acute Lymphoblastic Leukemia
AML	Acute Myeloid Leukemia
AUC	Area Under the Curve
BFM	Berlin-Frankfurt-Munich
BLAST	Basic Local Alignment Search Tool
BM	Bone Marrow
BMI	Body Mass Index
bp	Base pair
С	Cytosine
°C	Celsius, also called degree centigrade
CA 125	Cancer Antigen/ Carbohydrate Antigen 125
CAG	Cancer-Associated Gene
CBC	Complete Blood Count
CCG	Children's Cancer Group
CD	Cluster Designations
cDNA	Complementary DNA
CI	Confidence Interval
CLL	Chronic Lymphocytic Leukemia
CNS	Central Nervous System
CSF	Cerebrospinal Fluid
Ct	Cycle threshold
DEPC	Diethyl Pyrocarbonate
DNA	Deoxyribonucleic Acid
dNTP	Deoxynucleotide Triphosphate
ECG	Electrocardiography
EDTA	Ethylenediaminetetraacetic Acid
EGIL	European Group for the Immunological Characterization of Leukemias
FISH	Fluorescence In Situ Hybridization
EMSP1	Enamel Matrix Serine Protease 1
FAB	French-American-British
G	Guanine
g	Gram
GAPDH	Glyceraldehyde 3-Phosphate Dehydrogenase
HGNC	Human Gene Nomenclature Committee
HIV	Human Immunodeficiency Virus
HLA	Human Leukocyte Antigen
HSCT	Hematopoietic Stem Cell Transplantation
ISIS	Daesh

IU	International units
KLK	Kallikrein Related-Peptidases
L	Liter
L ₁₋₃	Lymphoblasts morphological categories 1-3
LDH	Lactate Dehydrogenase
LOE	Level Of Evidence
Μ	Molarity
Min	Minute
miRNA	MicroRNA
ml	Milliliter
MPO	Myeloperoxidase
MRD	Minimal Residual Disease
mRNA	Messenger Ribonucleic Acid
Ν	Number
NA	Not Available
NACB	National Academy of Clinical Biochemistry
NCBI	National Center for Biotechnology Information
NCI	National Cancer Institute
ng	Nanogram
NTC	No Template Control
OR	Odds Ratio
p	Probability
PAR	Protease Activated Receptor
PAS	Periodic Acid Schiff
PCR	Polymerase Chain Reaction
POG	Pediatric Oncology Group
PSA	Prostate-Specific Antigen
qPCR	Quantitative Polymerase Chain Reaction or Real-time PCR
RBC	Red Blood Cell
ROC	Receiver Operating Characteristic
rpm	Round per minute
RQU	Relative Quantification Unit
rRNA	Ribosomal Ribonucleic Acid
RT-PCR	Reverse transcription-polymerase chain reaction
SBB	Sudan Black B
SE	Standard Error of the Mean
Sec	Second
Sg	Seminogelin
SIGLEC	Sialic Acid-binding Ig-like Lectin
SNP	Single Nucleotide Polymorphisms
Ta	Annealing Temperature
TAP	Testicular Acid Phosphatase gene

Taq	Thermus Aquaticus gene
TBE	Tris/Borate/EDTA buffer solution
TLP	Traumatic Lumbar Puncture
T_m	Melting Temperature
UKALL	United Kingdom Acute Lymphoblastic Leukaemia
UV	Ultraviolet
WBC	White Blood Cell
WHO	World Health Organization
-ME	-Mercaptoethanol
μl	Microlitter

CHAPTER ONE Introduction

INTRODUCTION

Chapter One: Introduction

1.1 Background of the study

Acute lymphoblastic leukemia (ALL) is the most universally diagnosed pediatric malignancy (1). A standard-based clinical and laboratory analyses are performed to understand clinical-pathological aspects of the disease and approach to their diagnosis, treatment, and outline prognostic factors (2). The prevalence of the use of conventional molecular biomarkers for diagnosis, prognosis, and prediction of ALL in adults is four times surpassing compared to children (3).

There are also significant gaps in our understanding of various molecular features of kallikrein functions. Human kallikrein related-peptidases (KLKs) consist of a single family of fifteen homologous secreted serine proteases. They are significant in regulating normal physiological functions and their dysregulation is associated with the progression of diverse diseases and malignancies (4).

Tumor biomarkers are biomolecules that can be used to detect the presence of cancer, and/or provide information in patient management. They play a substantial role in the diagnosis of malignancies, prognosis, and prediction of treatment strategies (5). Cancer biomarkers could be nucleic acids, proteins, cells, metabolites, or processes such as proliferation, angiogenesis, or apoptosis (6). **CHAPTER ONE**

INTRODUCTION

Several kallikreins have been proposed as putative cancer biomarkers in clinical oncology as relevant diagnostic, prognostic, and monitoring molecular biomarkers in a range of human malignancies. The most well-known example is the worldwide use of KLK3 or (Prostate-Specific Antigen, PSA) in the diagnosis and monitoring of prostate cancer (7). The shortage of data on KLKs in hematological malignancies provided the impetus for the current work. This study put forth the hypothesis that there could be an association between kallikrein-related peptidases and leukemia. The goal of the current study was to investigate the possibility of using mRNA gene expression levels of *KLK6*, *KLK10*, and *KLK14* as diagnostic and/ or prognostic biomarkers for acute lymphoblastic leukemia, and to assess the effect of chemotherapy on their expression profile after one month and three months of receiving chemotherapy.

1.2Aim and objectives of the study

To address the hypothesis of the current study, the following objectives were formulated:

) Perform quantitative measurement of mRNA gene expression levels of the kallikrein-related peptidases: *KLK6*, *KLK10*, and *KLK14* in newly diagnosed childhood ALL patients and healthy control blood donors using the real-time qPCR.

-) Correlate the mRNA expression levels of the *KLKs* in newly diagnosed childhood ALL patients and the continuous variables (age, lymphocyte count, WBC, and serum LDH concentration).
- Assess the potential diagnostic values of the *KLKs*' mRNA expression.
-) Investigate the prognostic ability of the *KLKs*' mRNA expression.
- *Evaluate the KLKs'* mRNA expression levels of childhood ALL patients after one month and three months of receiving chemotherapy.

CHAPTER TWO

Literature Review

LITERATURE REVIEW

Chapter Two: Literature Review

2.1 Acute Lymphoblastic Leukemia (ALL)

Leukemias are defined as a group of malignant disorders that occur due to abnormal and uncontrolled proliferation of leukocytes. Leukemias affect the specialized hemopoietic tissue of the bone marrow and could affect peripheral blood, lymphoid tissues, and spleen. Depending on the period the disease would progress, leukemias are classified into acute or chronic (8). Mature cells in bone marrow stem cells are generated through various steps of self-renewal, maturation, and progressive differentiation. Immature, young, or primitive blast cells will then form mature peripheral blood cells (9). Acute leukemias are caused by an abnormal proliferation of the primitive cells and chronic leukemias are due to malignancy of the mature and maturing cells.

Acute lymphoblastic leukemia (ALL) is a cancer of lymphoblasts, which is composed of either B or T lineages. Approximately 85% of the ALL cases are precursor B-cell ALLs, which typically manifest as pediatric acute leukemias. Precursor T-cell ALLs are less common and tend to present more frequently in adults (10). ALL is the commonest pediatric cancer. The childhood ALL cure rate is more than 80% at five-year survival rates (11). However, less progress has been achieved in the treatment of adults ALL. CHAPTER TWO

LITERATURE REVIEW

2.1.1 Epidemiology of ALL

ALL is the most common childhood malignancy. It represents 23% of pediatric cancer cases. In the United States, 80% of diagnosed ALL cases are in children (12). Infant ALL represents 2% to 3% of pediatric cases. The overall incidence rate in both the United States and the Nordic countries is 3.9 per 100,000/year in people younger than 15 years (13). ALL incidence rates in developed countries peak between the age of 2 to 5 years. The incidence of the disease is almost three times as frequent in whites as compared to blacks. It is slightly more common in males than in females; the male-to-female ratio is about 1.2 to 1.0 (14). With the exception, the frequency is slightly higher in female infants. Exposure to depleted uranium, as well as massive use of chemical weapons by the former Iraqi regime and recently by ISIS against Iraqi population, has been connected to a rise in leukemia rates in several Iraqi cities (15). According to a local study, the leukemia incidence rate per 100,000 pediatric age population was 3.57 in boys, and 2.97 in girls (16).

2.1.2 Etiology and risk factors of ALL

It is considered that the etiology of acute leukemia is idiopathic. Nevertheless, some factors have been examined as possible risk factors for the disease including genetic, environmental, and infectious risk factors (8, 13, 17-21). The genetic aspects include genetic abnormalities such as chromosome aneuploidy and translocations. The environmental aspects include in utero

5

exposure to ionizing radiation, maternal frequent exposure to pesticides, exposure to benzene, and drugs such as alkylating agents. The infection aspects include maternal infection during pregnancy which has been linked to an increased risk of childhood leukemia.

2.1.3 Classifications of ALL

2.1.3.1 FAB morphologic classification of ALL

The French-American-British (FAB) morphologic classification was first produced in 1976 (22). This classification relied on the morphological and cytochemical microscopic appearance of leukemic cells. Three morphological categories of lymphoblasts in ALL were defined namely L_1 , L_2 , and L_3 established on their size, cytoplasm, nucleus, chromatin, basophilia, and vacuolation. Generally, 85% of pediatric ALL diagnosed cases have L_1 morphology, 14% have L_2 , and about 1% have L_3 . The FAB classification is presented in (**Figure 2.1**) and (**Table 2.1**) (23, 24).

Figure 2.1. FAB morphologic appearance of blast cells in ALL.

This figure demonstrates FAB morphological classifications; ^aALL-L₁: small and homogenous blasts, ^bALL-L₂: lymphoblasts of varying size, and ^cALL-L₃: prominent cytoplasmic vacuoles.

6

Characteristics	L ₁ morphology	L ₂ morphology	L ₃ morphology
Cell size	Small in size,	Large, irregular	Large, regular
	uniform	size	size
Nuclear shape	Round and	Irregular nucleus	Round nucleus
	regular nucleus	outline	
Nuclear chromatin	Homogeneous	Heterogeneous,	Finely granular
		condensed	stippled
Nucleoli	Barely visible	Prominent	Prominent
Cytoplasmic amount	Scanty	Abundant	Abundant
Cytoplasmic	Intensity is	Variable	Very deep
basophilia	slight to		
	moderate		
Cytoplasmic	Variable	Variable	Prominent
vacuolation			

Table 2.1. FAB morphologic classification of blast cells in ALL.

Special stains were used to identify the exact FAB group such as Periodic Acid Schiff (PAS), Sudan Black B (SBB), and Myeloperoxidase (MPO). Blasts in ALL cases cytochemically have negative results in both MPO and SBB reactions and usually positive results in PAS reactions (25-27). It is difficult to distinguish between B- and T-lineage ALL using morphological criteria, and much more difficult to identify B-lineage lymphoblasts from normal B-lineage lymphoid progenitors. (23).

2.1.3.2 Immunophenotype and cytochemical classification of ALL

Immunological markers are found on the surface, in the nuclei, and in the cytoplasm of leukemic cells. The surface markers can be detected using monoclonal antibodies conjugating with different fluorochromes. These cell surface markers are called cluster designations which are expressed as the CD. CHAPTER TWO

LITERATURE REVIEW

Flow cytometry immunophenotyping is performed for the diagnosis and prognosis of ALL which is an accurate technique for assigning a cell line to one of the main cell lineages (28, 29). The European Group for the Immunological Characterization of Leukemias (EGIL) proposed a guideline for the immunological characterization of acute leukemias based on the idea that surface and cytoplasmic antigens may be present and/or absent during lymphocyte maturation. Then, the cell line and degree of differentiation of the leukemic process can be detected according to antigen expression (30). Most childhood ALL cases are developed as a result of the monoclonal proliferation of B-cell precursors (80%), mature B-cell (5%), and T-cell ALL (15%) (31). According to the bone marrow differentiation steps of normal B-cell progenitors, B-lineage ALL was classified into Pro-B, common Pre-B, Pre-B, and B-cell ALL (29, 32, 33). T-lineage ALL was categorized using differentiation antigens that corresponded to normal thymocyte differentiation levels, into Pre-T, T-Intermediate, and Mature or Medullar ALL (29, 33).

2.1.3.3 Cytogenetic and molecular classification of ALL

The World Health Organization (WHO) categorized hematological neoplasms in 2001, revised them in 2008, and then in 2016 (34, 35). The WHO produced a standard based on clinical and laboratory data derived from different methods including analysis of cell morphology, cytochemistry, immunophenotyping, cytogenetic and molecular genetics to understand clinical-

8

pathological aspects of diseases and approaches to their diagnosis, treatment, and outline prognostic factors (2, 35).

Genetic abnormalities in B-cell ALL is significantly related to the occurrence of specific chromosomal rearrangements involving hyperdiploidy hypodiploidy (51-65 chromosomes) (36), (44 chromosomes) (37). rearrangement of mixed-lineage leukemia (MLL) (38),11a23 at t(9;22)(q34;q11)/BCR-ABL1 (37), and t(12;21)(p13;q22)/TEL-AML (ETV6-*RUNX1*) (38).

Genetic deregulations in T-cell ALL are mostly related to the abnormal expression of normal transcription factor proteins. This is frequently a consequence of chromosomal translocations that commonly involve the 14q11 juxtaposing promotor and enhancer constituents of T-cell receptor genes (39). Frequent genomic features of T-ALL include *TAL1* deregulation, *LMO2* deregulation, *NOTCH1* mutations, and *MLL* rearrangements (37).

2.1.4 Clinical features of ALL

The onset of the signs and symptoms of childhood acute leukemias are mostly present within few weeks (40). The highly important clinical manifestations are the following:

9

LITERATURE REVIEW

2.1.4.1 Bone marrow failure

The bone marrow (BM) of children with ALL is extensively infiltrated by blasts. The presentation includes the symptoms of fatigue, paleness, fever, bleeding, bone pain, dyspnoea, angina, dizziness, weight loss, malaise, repeated infections, petechiae, and bruising. Anemia, neutropenia, and thrombocytopenia are often present in their CBC findings (9).

2.1.4.2 Neoplastic infiltration involvement

Lymphadenopathy, hepatomegaly, and splenomegaly are frequent and commonly painless (10). Enlargement of the kidneys can be seen in 30-50% of pediatric patients without having therapeutic and prognostic implications (9). Also, in rare cases, enlargement of the pancreas has been reported as a result of leukemic cells infiltrating the pancreas (41).

2.1.4.3 Central nervous system (CNS) manifestation

Meningeal spread may present with headaches, vomiting, and nerve palsies. CNS leukemia can be detected by morphological examinations of cerebrospinal fluid (CSF). Approximately 3-5% of ALL childhood patients show signs of CNS leukemia at initial diagnosis and 30-40% of patients at relapse (42).

2.1.4.4 Skeletal manifestation

Infiltration of bone marrow may appear as bone pain that markedly affects the long bones. This presents with a limp or refusal to walk. Bone tenderness is mostly observed. At ALL diagnosis up to 25% of pediatric patients have radiographic abnormality osteopenia, and fractures are observed in 10% (43).

2.1.4.5 Genital system involvement

Painless testicular scrotum enlargement can be an indication of testicular leukemia or hydrocele caused by lymphatic blockage (24). The involvement of the uterus and cervix with ALL is extremely uncommon, and ovarian involvement is even rarer (44).

2.1.4.6 Gastrointestinal tract manifestation

Gastrointestinal manifestations in childhood ALL is present in one-fourth of patients at autopsy and usually during relapse. Patients with leukemic infiltrates are frequently asymptomatic or have non-specific and vague complaints. The most common symptoms are probably abdominal pain, diarrhea, nausea, vomiting, or gastrointestinal bleeding (45).

2.1.4.7 Mediastinal manifestation

Patients with precursor T-cell ALL frequently affect the thymus and appear with a mediastinal mass with or without associated pleural effusions. This results in respiratory distress and other signs of superior vena cava syndrome (46). About one-half of children with T-cell ALL have mediastinal masses (24).

LITERATURE REVIEW

2.1.4.8 Biochemical abnormalities

Frequent breakdowns of leukemic cells cause hyperuricemia (47). Hyperkalemia is often associated with massive cell lysis (48). Hyperphosphatemia with secondary hypocalcemia is often observed at diagnosis (49). High serum levels of lactate dehydrogenase (LDH) are detected at ALL diagnosis and relapse due to rapid cell turnover, and it is reported to be normalized during remission (24).

2.1.5 Diagnosis of ALL

The initial step in diagnosing childhood ALL begins with patient history and physical examination. After evaluation of the chief complaint and symptoms, several diagnostic tests and clinical procedures are ordered to approach the diagnosis of ALL, as formulated below:

- Complete Blood Count (CBC) with differential and peripheral blood smears are quick and inexpensive investigations to evaluate the cellular constituents and examine abnormalities (50).
- Bone marrow aspiration is performed for a definitive diagnosis of acute leukemia. It is usually operated under general anesthetic in children. Bone marrow aspirate assesses the cellularity, morphological, immunological, cytogenic, and enumeration of blast cells and mature cells. During treatment, BM aspiration is also performed to establish a response to treatment by the determination of minimal residual disease (MRD) (51). The standard criteria to confirm ALL diagnoses requires a minimum of 20% blast cells (48).

12

- Bone marrow trephine biopsy is performed when BM aspiration is not possible in a case with compact bone marrow and a 'dry tap' due to marrow fibrosis, infarction, or necrosis. It is also used as a diagnostic test to show the degree of disruption in bone marrow integrity as a result of leukemia development (52, 53).
-) Cytochemical special stains are used to identify cell lineages (lymphoid, myeloid), such as Periodic Acid Schiff (PAS), Sudan Black B (SBB), and Myeloperoxidase (MPO) (54).
-) Histochemistry and flow cytometry immunophenotyping studies are performed for BM aspirates and peripheral blood samples using a group of monoclonal antibodies to assign acute leukemia lineage (55).
-) Cytogenetic and molecular studies are performed to identify specific genetic abnormalities using karyotyping, qPCR, FISH, or SNP array analysis (56).
- A lumber puncher test is performed for CSF cytologic analysis. Depending on CSF results, CNS involvement in childhood ALL (42) is classified as follows: CNS-1: less than 5 WBC/mm³, and no blasts detected in the CSF.

CNS-2: less than 5 WBC/mm³, and blasts detected in the CSF.

CNS-3: more than 5 WBC/mm³, and blasts detected in the CSF or cranial nerve involvement or presence of cerebral mass. CSF with more than 10 RBC/mm³ with or without blasts, is defined as a traumatic lumbar puncture (TLP). The following formula is used to define the presence of CNS leukemia:

if the ratio of CSF WBC/CSF RBC is greater than Blood WBC/Blood RBC then, CNS involvement in ALL is present (48).

-) Chemistry assays are performed to detect liver and kidney problems produced by leukemic cell dispersal or the adverse effects of chemotherapy treatments.
-) Ultrasound sonography and radiography are performed to check the presence of mediastinal mass, cardiomegaly, and hepatosplenomegaly (57).
- Electrocardiography (ECG) and echocardiogram are performed to check cardiac function (58).
-) Tissue Human Leukocyte Antigen (HLA) typing is performed when a donor stem cell transplant is a part of ALL treatment (59).
-) Cytomegalovirus antibody titer, hepatitis virus screen, and HIV screen are performed to detect infections (60, 61).
-) Coagulation tests are performed to check blood is clotting properly (62).

2.1.6 Prognostic factors and risk stratification of childhood ALL

Several clinical and laboratory-based features were identified to have prognostic value in response to therapy (63). Patient age at diagnosis, initial WBC count, gender, immunophenotype, genetic alterations, and early responsiveness to induction therapy has been identified as highly important factors to assess prognosis and define risk group in childhood ALL (**Table 2.2**). Several criteria have been defined to classify risk stratifications by some cooperative groups. For example, a set of risk criteria was constructed in 1993 by the Pediatric Oncology

CHAPTER TWO

Prognostic factors	Favorable	Unfavorable	Reference
Age (year)	1 to 9	1 or 10	(64)
WBC count ($\times 10^9/L$)	50	50	(65)
Gender	Female	Male	(14)
Ethnicity	White	Black	(66)
Immunophenotype	B-cell lineage	T-cell lineage	(67)
Genotype	Hyperdiploidy 50 ; <i>ETV6-RUNX1</i> t(12;21)(TEL- AML1) Trisomies 4,10,17	Hypodiploidy 44 ; t(9;22) <i>BCR-</i> <i>ABL1</i> t(4;11) <i>MLL-AF4</i> t(17;19) <i>TCF3-</i> <i>HLF</i>	(68)
CNS involvement	CNS1	CNS3	(69)
Testicular Enlargement	Absent	Present	(70)
Time to remission	14 days	28 days	(65)
MRD at end of induction	0.01%	0.01%	(71)

Table 2.2. Prognostic factors in pediatric ALL.

Group (POG) and Children's Cancer Group (CCG) (72). Their criteria defined standard risk as (a WBC count less than $50,000/\mu$ l and patients aged 1 to 10 years), and high-risk (all other ALL patients including T-ALL regardless of WBC count or age). The National Cancer Institute (NCI) risk group classification, defined standard-risk as (WBC count less than $50,000/\mu$ l and age less than 10 years) and high-risk (WBC count more than $50,000/\mu$ l and/or age 10 years or older) (73). Pediatric ALL cases most often are classified into standard-, medium-
CHAPTER TWO

LITERATURE REVIEW

, and high-risk stratify groups (9). Based on known prognostic factors, pediatric oncologists stratified patients into various risk groups. Lower-risk group, a favorable outcome, can be treated less intensively to reduce late side effects of treatment toxicities. Higher-risk group, unfavorable outcome, targeted with more aggressive and diverse types of therapies (74).

2.1.7 Treatment of ALL

Childhood ALL treatment protocols generally involve three main phases: induction, consolidation, and maintenance; including CNS prophylaxis therapy and intensive supportive care. The protocols include an intensive combination of chemotherapy regimens and it may be supplemented with hematopoietic stem cell transplantation and/or radiation therapy. These treatments take two to three years based on early therapy outcomes, the intensity of the current protocol, and the analysis of prognostic factors. Cure rates are more than 80% in pediatric patients at five-year survival rates (11, 75, 76).

2.1.7.1 Induction therapy

Remission induction is the first phase of chemotherapy, in which nearly all leukemic cells in the bone marrow are rapidly eradicated to reduce tumor burden and restore normal hematopoiesis. Patients in complete remission are defined as the bone marrow of normal cellularity, with less than 5% of lymphoblasts present, and CBC count within the normal range (77). The backbone of the induction regimen typically includes vincristine, asparaginase, and a glucocorticoid. For the

16

high-risk group, an additional fourth drug, anthracycline is added to the dose regimen to reduce bone marrow relapse (75, 78). On the day 29th of induction, ALL patients are tested for minimal residual disease (MRD). Based on the results of the MRD test and cytogenetic risk group, post-induction treatment is then introduced (79, 80).

2.1.7.2 Consolidation therapy

After the achievement of complete remission, the second phase of treatment for ALL patients is consolidation or intensification therapy. This additional therapy is to eradicate any remaining drug-resistant leukemic cells, which lowers the chance of relapse and survival improved. The patients receive the same drug schema used in the induction phase in combination with different drugs depending on the risk group assignment, the day 29 MRD result, the absolute neutrophil count, the platelets count, and their body mass index (BMI). The duration of the treatment and combination of the drugs considerably vary among patient populations (65). The most widely used consolidation schema is the Berlin-Frankfurt-Munich (BFM) protocol. The treatment of standard-risk the consolidation phase includes patients in the administration of cyclophosphamide, cytarabine, 6-mercaptopurine, and methotrexate. The treatment of high-risk patients receives additional regimens of asparaginase and vincristine (57, 81). Delayed intensification is introduced to all patients or patients with higher risk. It improves the outcome and reduces the risk of relapse (82, 83).

2.1.7.3 Maintenance therapy

Maintenance or continuation therapy is performed in low intensity to prevent relapse and to further reduce nondetectable residual leukemic cells after consolidation therapy. The patients receive daily oral 6-mercaptopurine, weekly methotrexate, periodically corticosteroids, and vincristine for two to three years. The effectiveness of this phase of treatment is determined by the metabolism of 6-mercaptopurine to 6-thioguanine (57, 84). The metabolites of 6-mercaptopurine are quantified. The pediatric patients on continuation therapy are carefully monitored to address the related chemotherapy toxicity and compliance issues (85, 86).

2.1.7.4 CNS-directed therapy

At the time of diagnosis, leukemic CNS involvement is infrequent; it is seen in 3-7% of the patients and more than half of the cases in the absence of CNS-directed therapy. CNS provides a pharmacological sanctuary site for the leukemic cells, which are undetected at diagnosis and systemic chemotherapy cannot readily access them because of the blood-brain barrier. Specific CNS prophylaxis is introduced early in the protocols, to eradicate clinically CNS disease at the time of diagnosis and to avoid the risk of CNS relapse (87). CNSdirected therapies usually involve high-dose systemic chemotherapy, intrathecal

LITERATURE REVIEW

chemotherapy (87, 88), and cranial irradiation in a small subgroup of children with overt CNS (89). The suggested radiation dose is highly dependent on the systemic chemotherapeutic intensity. Treatment with cranial irradiation of 18 Gray is typically warranted in patients with CNS-3 at diagnosis. Even in the absence of cranial irradiation, intensified CNS-directed chemotherapy is related to attentional dysfunction in survivors of childhood ALL (90). CNS-directed chemotherapy carries the chance of secondary CNS neoplasms, seizures, encephalopathy, and neurocognitive toxicities that probably cause continual impairments in intelligence, memory, processing speed, attention, and administrative functions (91, 92).

2.1.7.5 Supportive care

Enhanced intensive supportive care is crucially important for ALL patients and it contributes to achieving complete drug dose, reducing chemotherapyrelated toxicities, and improving survival rates (93). Supportive care mostly involves infection control (94, 95), management of tumor lysis syndrome (96-98), management of thrombosis (99, 100), management of thrombocytopenia and anemia (101-104), and hematopoietic stem cell transplantation (HSCT) therapy (105-107).

LITERATURE REVIEW

2.2 Human kallikrein-related peptidases

The human tissue kallikrein and kallikrein-related peptidases (KLKs) consist of a single family of fifteen homologous, highly conserved, secreted trypsin- or chymotrypsin-like serine proteases (108). Kallikrein was first isolated in high concentrations from pancreatic extracts by Werle and colleagues in the 1930s, and the term originated from the Greek word (kallikreas) which means the pancreas (109). Tissue and plasma kallikreins are two distinct types of kallikreins that have different molecular weights, gene structure, substrate specificity, immunological features, and the type of kinin produced from kininogens (110). Kallikreins are present in diverse tissues and bodily fluids acting as enzymes cleaving peptide bonds (111). Tissue KLKs have a wide spectrum of important roles in normal and pathophysiological processes including kinin formation, skin desquamation, blood pressure control, semen liquefaction, tissue remodeling, electrolyte balance, and prohormone processing (112). Plasma kallikrein is a glycoprotein encoded by the KLKB1 a single gene mapped on human chromosome 4q34-35. It is only expressed by the liver cells, then it is secreted into the blood system (113, 114). The gene consists of 15 exons and encodes an inactive enzyme (114). The enzyme is then activated by the coagulation factor XII. High molecular weight kiningen is cleaved by plasma kallikrein, releasing the bioactive peptide bradykinin. (115, 116). Plasma kallikrein works as a mediator of inflammatory reactions, blood clotting, fibrinolysis, blood pressure, and bradykinin secretion (110, 115, 117).

20

2.2.1 Gene family of kallikrein-related peptidases

Human kallikrein-related peptidases present the largest uninterrupted cluster of serine proteases in the human genome. They are coded for by a family of fifteen functional genes clustered contiguously on chromosome 19 located at q13.3-13.4 (118-120). The human *KLK* locus is attached centromerically by the testicular acid phosphatase gene (*ACPT*), and telemetrically by a cancerassociated gene (*CAG*), and *Siglec-9* belongs to the SIGLEC (Sialic acid-binding Ig-like lectin) family (121, 122). A genetic map of the human *KLK* locus is illustrated in (**Figure 2.2**).

Figure 2.2. The human kallikrein locus, gene, and protein features.

Schematic representation of (a) The human *KLK* gene cluster found at chromosome 19q13.4 and the corresponding (b) gene, and (c) protein structure. This figure is adapted from (123).

CHAPTER TWO

LITERATURE REVIEW

The classical kallikreins are *KLK1* (tissue kallikrein), *KLK2* (glandular kallikrein), and *KLK3* (PSA), which were the first three genes discovered in the human kallikrein locus (124). *KLK4* to *KLK15* represent the rest of the kallikrein gene family, which was identified in the late 1990s. (125). Proteases KLK2-15 are formally named kallikrein-related peptidases, which are without confirmed kininogenase activity (119). The members of the human kallikrein gene family are compared below (120, 125):

- All genes of the family colocalize to the same chromosomal regions (19q13.3-13.4) in a linear arrangement.
-) Serine proteases with a conserved catalytic triad (histidine, aspartic acid, and serine) are encoded by all genes.
- Although the family's genes all have five coding exons, certain members have one or more 5 untranslated exons.
-) The coding exons are close in size or identical.
- All members of the gene family have entirely conserved intron phases.
- At the DNA and amino acid levels, all of the family's genes exhibit strong sequence homologies (40-80 percent).
-) Most KLKs in the family are controlled by steroid hormones including androgen, estrogen, and progestin in the body tissues (126, 127).
-) Epigenetic-related processes including DNA methylation, histone modification, and miRNA-mediated modulation of mRNA levels have been

demonstrated to be involved in the transcriptional and post-transcriptional regulation of KLKs (128-130).

) Furthermore, it has been established that single nucleotide polymorphisms (SNP) affect the KLKs' mRNA and protein expressions or could adjust the proteolytic activity of the resulting KLK proteases (131).

2.2.2 Protein structure of kallikrein-related peptidases

Kallikrein-related peptidases are a subclass of secreted serine endoproteases within the S1 family of clan SA (132). KLKs are translated as a single chain of prepro-enzymes with varying lengths that share approximately 40% protein identity (133). The prepro-KLKs are proteolytically fragmented upon production from the secretory pathway at the amino-terminal signal peptide (134). Once secreted, the pro-KLKs are still inactive, and further processed via cleavage of the N-terminal propeptide by other KLKs or proteases to become active extracellular peptidases (133, 135). Activated KLKs function to cleave bonds within polypeptide chains with three conserved catalytic residues; always occurring at the position of His⁵⁷, Asp¹⁰², and Ser¹⁹⁵ (standard chymotrypsin numbering) that span the active site, histidine near the end of the second coding exon, aspartic acid in the middle of the third coding exon, and serine at the beginning of the fifth coding-exon (Figure 2.2) (136). All KLK proteins consist of ten fully conserved cysteine residues forming five disulfide bonds (136). An additional pair of cysteine residues occur in KLK4-12 and KLK15 which is

CHAPTER TWO

LITERATURE REVIEW

unique for kallikreins compared with other S1A peptidases. Kallikrein substrate specificity is determined by residue 189, which is placed at the base of the substrate-binding pocket (137). The substrate-binding pocket's amino acid could be aspartate, exhibiting trypsin-like specificity cleaving after arginine or lysine residues as occurring in all of KLK 1, 2, 4, 5, 6, 8, 10, 12, and 13 (138). KLK15 possesses trypsin-like specificity, except with Glu¹⁸⁹ (139). For tyrosine, leucine, and phenylalanine residues, both KLK3 and KLK7 possess chymotrypsin-like specificity. They are with Ser¹⁸⁹ and Asn¹⁸⁹ residues, respectively (140). KLK9 possesses chymotrypsin-like specificity which has a Gly¹⁸⁹ residue that is likely responsible for the inability of KLK9 to hydrolyze the pro-KLK sequences (139). KLK 11 and KLK 14 have both trypsin-like and chymotrypsin-like activities. Hydrolysis of the peptide bond is initiated when the hydroxyl oxygen atom of the catalytic Ser¹⁹⁵ attacks the carbonyl of the substrate peptide bond utilizing His⁵⁷ as a general base (141). All kallikreins include a highly conserved Gly¹⁹³, except for KLK10, which contains serine instead. (142). During hydrolysis, Gly¹⁹³ is involved in stabilizing oxyanion intermediate of the internal peptide bond (143). It appears that KLK10 lacks proteolytic activity against traditional substrates due to the absence of Gly^{193} in its structure (139, 144). The proteolytic activity of KLKs is controlled by means of proenzyme activation, inactivation through internal fragmentation, and/or complex development with endogenous plasma and tissue inhibitors (145).

LITERATURE REVIEW

2.2.3 (Patho)physiological expressions and clinical relevance of kallikreinrelated peptidases

KLKs have diverse expression profiles and are found as bioactive components in various tissues and biological fluids that are crucial in the regulation of basic physiological functioning (**Figure 2.3**). The aberrant expression of a variety of kallikrein-related peptidases has been linked to a range of diseases and cancers. KLKs play a crucially important role as biomarkers, and PSA screening test is the best example of the clinical utilities of the family.

KLK1 is mostly produced in the pancreas, salivary gland, and kidney (146). By cleavage of low molecular weight kininogen, KLK1 releases kinin. This involves blood pressure regulation, pain induction, smooth muscle contraction, electrolyte balance, vascular permeability, neutrophil chemotaxis, and inflammation (147, 148). Besides, KLK1 involves in releasing nitric oxide, reducing oxidative stress, processing growth factors, and peptide bonds (147, 148). It was found that KLK1 was correlated with gastrointestinal stromal tumor invasion (149), and coronary artery disease (150).

Both KLK2 and KLK3 are extremely expressed in the prostate and seminal plasma (151). They have a role in seminal clot liquefaction and spermatozoa release through hydrolysis of seminogelin Sg-I and Sg-II, and the primary structural gel-forming proteins in human semen, fibronectin, is generated by seminal vesicles essential for sperm motility (152, 153). KLK3, commonly

25

Figure 2.3. The functions of kallikreins.

Schematic representation of some functions of KLKs: They involve several normal physiological and pathological conditions. This figure is adapted from (154).

known as the prostate-specific antigen (PSA), along with KLK2 is controlled by androgens and is predominantly expressed in prostate and breast malignancies. They are biomarkers for both cancers' diagnosis, prognosis, and monitoring (5, 7, 124, 155-158).

KLK4 was originally designated as enamel matrix serine protease 1(EMSP1) and was shown a role in cleaving enamelin (159). KLK4 involves amelogenesis, namely the formation of tooth enamel to achieve a high degree of mineralization (160). KLK4 is expressed in many tissues and predominately in the prostate. KLK4 is overexpressed in prostate cancer and ovarian cancer tissues (161, 162). KLK4 overexpression was also observed in colorectal cancer and its mRNA expression in colorectal adenocarcinoma was reported to be clinically

relevant as a poor prognostic indicator for unfavorable disease-free survival (163).

KLK5 expression is abundant in diverse human tissues, its mRNA is highly expressed in skin, breast, testis, ovary, salivary gland, and esophagus (145). KLK5 is a major proteinase along with KLK7, and KLK14 involving skin desquamation by degrading desmosomal adhesion proteins in the outermost layer of the skin (164-167). Dysregulation of KLK5 expression was found in ovarian, breast, prostate, and testicular carcinomas (168-171). It was reported that KLK5 is a potential tumor biomarker in endocrine-related malignancies correlated with poor prognosis in ovarian and uterine cervical malignancies (172). Differential expression of KLK5 is also found in hormone-independent cancers such as lung and bladder carcinomas (168).

KLK6 is highly produced in healthy tissues of the CNS, kidney, pancreas, endometrium, mammary, and prostate (173). *KLK6* mRNA expression is differentially regulated and contributed as an unfavorable prognostic tumor marker depending on the cancer grade. It is downregulated in breast cancer (174), upregulated in colorectal adenocarcinoma (175), and endometrial carcinoma (176). In 2016, *KLK5-9* transcripts were analyzed in distinct cancerous human tissues including leukemia via nested reverse transcription PCR (177). High serum levels of KLK6 protein were observed in ovarian cancer (178, 179), uterine serous papillary carcinoma (180, 181), psoriasis (182), Alzheimer's disease

CHAPTER TWO

(183), and multiple sclerosis (184), and KLK6 was found to contribute in their pathogenesis.

KLK10 is expressed in the skin, tonsils, brain, pancreas, esophagus, and sex organs (185). KLK10 expression is hormone-regulated and tissue-specific (186, 187). KLK10 is aberrantly expressed in pancreatic cancer and hormone-dependent malignancies. *KLK10* represents a potential tumor suppressor gene, and its expression is downregulated in ALL, breast, prostate, and testicular malignancies (188-192). KLK10 possesses as a biomarker in the diagnosis and prognosis of pancreatic, colorectal, and ovarian cancers (193-195).

KLK14 is expressed in the CNS, skin, breast, prostate, testis, bone marrow, lymph node, colon, skeletal muscle, and lung (196-198). It is regulated by steroid hormones (199, 200). KLK14 has a role in the control of activation and/or inactivation of some kallikreins including KLK1, KLK3, KLK5, and KLK11 (201, 202). KLK14 also involves skin desquamation, seminal clot liquefaction, cancer growth, invasion, and angiogenesis (164, 201-204). This gene has been examined as a potential tumor marker; downregulated at the mRNA level in breast, prostate, and testicular malignancies (197). Also, its upregulation at the mRNA level can be considered a poor prognostic biomarker for patients with colorectal cancer; have discriminatory power between colorectal cancer and adenoma patients (205). **Table 2.3** demonstrates the evidence of deregulation of *KLK6*, *KLK10*, and *KLK14* in several cancers and diseases (154).

Table 2.3. Deregulation of KLK6, KLK10, and KLK14 in cancers and

Л	ic	ea	Sf	PC
u	10	u		-0.

Disease	Kallikrein	Factor	Observation	
	KLK6 (CSF),	Increased expression		
Alzheimer's disease	KLK10			
	<i>KLK6</i> (brain,	Decreased expression		
	blood)		Suggestion of	
Aneurism	KI K6	Decreased expression	Suggestion of	
Ancurism	KLKO	Deereased expression	prognosis	
Multiple sclerosis	KLK6	Increased expression	Advanced disease	
Dementia with Lewy	KLK6	Decreased expression	Suggestion of	
bodies			diagnostic marker	
Psoriasis	KLK6, KLK10	Increased expression	Severity of skin	
N 11 1 1		- - - -	lesions	
Parkinson's disease	KLK6	Increased expression	Disease-associated	
	KIKIO KIKIA	Increased expression	Dotential diagnostic	
	KLK10, KLK14	increased expression	biomarkers	
Breast cancer			010IIIai Kers	
	KLK6	Increased expression	Suggestion of	
	KLK10	Promoter methylation	favorable prognosis	
			Suggestion of	
Colorectal cancer	KLK6, KLK10	Increased expression	unfavorable	
			prognosis	
Castria comocr	VIVG VIV10	In an a condition	Suggestion of	
Gastric cancer	KLK0, KLK10	Increased expression	nrognosis	
	KI K10	Promoter methylation	Suggestion of	
Head and neck cancer	MERTO	Tromotor methylation	unfavorable	
	KLK6, KLK10	Increased expression	prognosis	
	KLK10	Promoter methylation		
			Suggestion of	
Lung cancer	KLK6	Increased expression	unfavorable	
		T	Prognosis	
Molonomo	KLK14 VIV6	Increased expression	Diagnostic marker	
	KLKO KLK6	Increased expression	Advanced stage	
	KLKU	mercased expression	Auvanceu stage	
Ovarian cancer	KLK10, KLK14	Increased expression	Suggestion of	
	,	1	favorable prognosis	
	KLK10	SNP		
	KLK10	SNP	Suggestion of	
Prostate cancer	TTTTTTTTTTTTT		unfavorable	
	KLK14	SNP	prognosis	
This table is adapted from (154).				

CHAPTER THREE Materials and Methods

Chapter Three: Materials and Methods

3.1 Laboratory equipment, kits, and reagents

All instruments and tools used in this study are listed in (**Appendix A**). The kits and reagents used in this study are listed in (**Appendix B**).

3.2 Study design and ethical consideration

This study was a prospective, analytical, observational, and case-control study. The population involved in this study was male or female children aged 1-15 years. The participants involved in the study were admitted to the Pediatric Department in Hiwa Cancer Hospital in Sulaimani Governorate in Kurdistan/ Iraq and they were newly diagnosed with acute lymphoblastic leukemia (ALL). Also, healthy pediatric volunteers were selected as control individuals. The sample collection and molecular biology work, including the patients' follow-up started in June 2018 and was completed in January 2020.

The research proposal was approved by the Research Ethics Committee of the University of Sulaimani's College of Medicine (approval number 55 on September 17th, 2017), the Directorate of Health in Sulaimani Governorate, and the Scientific Committee at Hiwa Hospital (**Appendix C**). The research and practical work of the present study was conducted at Kurdistan Institution for Strategic Studies, Molecular Biology Laboratory in Hiwa Cancer Hospital, and Bakhshin Hospital.

3.3 Enrollment and consent

A total of twenty-three newly diagnosed ALL patients and twelve healthy pediatric volunteers were qualified for the inclusion criteria of the current study.

The guardian of all of the recruited individuals was requested to complete an informed consent form in writing voluntarily before they were engaged in the research. The purpose, procedure, and benefits of the study were also explained to the participants and their families (**Appendix D**). All participants have gone through a standardized interview process and all demographic information was collected on a form specially designed for the study, including sex, age, height, weight, and medical history and they received more information about the study protocol (**Appendix E**).

3.4 Inclusion and exclusion criteria

Inclusion criteria for the patients:

- Newly diagnosed ALL patients and admitted to Pediatric Department in Hiwa Cancer Hospital. Clinical diagnosis of ALL cases was established by bone marrow examination and cell Immunophenotyping.
- Male or female pediatric participants.
- Accept to sign an informed written consent form, willing to participate in and comply with the study.

Exclusion criteria for the patients:

A known malignancy and/or a hematological disorder other than ALL.

Inclusion criteria for the control group:

-) Male or female healthy pediatric volunteers. They were examined by specialist physicians, and their status was confirmed clinically by laboratory examination results.
- Accept to sign an informed written consent form, willing to participate in and comply with the study.

Exclusion criteria for the control group:

A known malignancy and/or a hematological disorder.

3.5 Sample collection

Two milliliters of venous blood were obtained from each patient's cubital vein using disposable syringes. The drawn blood was collected in a lavender tube, with potassium EDTA content. The samples were transported to Kurdistan Institution for Strategic Studies in a cool box. They were instantly used for molecular biology work. Blood samples were collected from leukemic patients at three different times: when diagnosed with ALL, after one month of receiving chemotherapy, and after three months of receiving chemotherapy. Diagnosis of childhood ALL cases was established by bone marrow examination and cell immunophenotyping. ALL patients were treated according to UKALL Interim Guidelines (206).

3.6 RNA extraction

The RNA was extracted using a Prime PrepTM Blood RNA Extraction Kit (GeNet Bio, Daejeon, South Korea) according to the manufacturer's instructions. This kit extracts total cellular RNA from whole blood. Contaminants and enzyme inhibitors such as heparin and hemoglobin were entirely removed. The wash buffers were made following the user's guide before commencing the experiment, by the addition of 20 ml and 44 ml of absolute ethanol to Buffer BRW1 and Buffer BRW2, respectively. A 200 µl of whole blood with 1 ml of Buffer BRR in a 1.5 ml eppendorf microcentrifuge tube was mixed. The tube was incubated on ice for 15 min until the cloudy mixture became translucent which indicates lysis of erythrocytes. The tube was vortexed twice during incubation. The tube was centrifuged at 3500 rpm for 15 min at 4°C. After centrifugation leukocytes formed a pellet and the supernatant was smoothly removed using micropipette. A 400 µl of Buffer BRR was added to the cell pellet and resuspended by pulse vortexing. The tube was centrifuged at 3500 rpm for 10 min at 4°C and the supernatant was completely removed using a micropipette.

Then, 350 μ l of Buffer BRL and 3.5 μ l of -mercaptoethanol (-ME, 14.2 M) were added to the pelleted leukocytes and mixed by vortexing for 15 sec. The lysate was transferred into Spin Column 1 (blue O-ring) placed in a 2 ml collection tube, and centrifuged for 2 min at 14000 rpm. After centrifugation, the flow-through was carefully transferred onto a new 1.5 ml eppendorf tube. After

that, 350 μ l of 70% ethanol was added to the homogenized lysate. The tube was centrifuged at 3,500 rpm for 20 sec at 20°C.

Up to 700 µl of the mixture was transferred to Spin Column 2 and collected in a 2 ml tube, centrifuged at 14000 rpm for 1 min at 20°C and the pass-through was discarded. Spin Column 2 was reinserted onto the same collection tube. To wash the membrane, 700 µl of Buffer BRW1 was introduced to Spin Column 2 and centrifuged at 14000 rpm for 1 min at 20°C. The Spin Column 2 was carefully reinserted onto a clean collection tube. For another wash of the membrane, 500 µl of Buffer BRW2 was added to Spin Column 2, centrifuged at14000 rpm for 1 min at 20°C. The pass-through was removed and the Spin Column 2 was reinstalled in the same collecting tube. For further washing, this step was repeated twice. It was then centrifuged at 14000 rpm for 2 min at 20°C to remove residual wash, so during RNA elution, the membrane of the spin column dried, and no ethanol was carried over.

To elute the RNA, a 1.5 ml nuclease-free collection tube was inserted into Spin Column 2. In Spin Column 2, 40 μ l of Buffer BRE was introduced to the membrane's center and left at room temperature for 2 min. At 20°C, it was centrifuged for 2 minutes at 14000 rpm. The purified RNA samples were then aliquoted and stored at (-20°C) for immediate use, and for long-term storage, it was kept at (-70°C).

34

3.7 Checking RNA integrity

The quantity, quality, and integrity of extracted RNA were evaluated. The concentration of RNA from all the samples was measured using Eppendorf Biophotometer, following the operating manual. A clean, dry, new cuvette was chosen to measure blank (zero absorbance) using 50 μ l nuclease-free water. Then, the RNA sample's concentration was measured in μ g/ml using a 5 μ l RNA sample and 45 μ l nuclease-free water. For gene expression analysis, only RNA samples with an absorbance ratio A260/280 greater than 1.8 and an A260/230 ratio of nearly 2 were selected (207). The integrity and quality of the RNA samples were examined on 1.5% agarose gel electrophoresis visualized by 1.0 % ethidium bromide. Two ribosomal RNA bands appeared, one of 18S rRNA and the other of 28S rRNA. The band of 28S rRNA had higher intensity than 18S rRNA (208). This gave a clue about the integrity of the RNA samples, and those with significant degradation were discarded (209).

3.8 cDNA synthesis

The RNA samples were reverse transcribed into a first-strand complementary DNA (cDNA) before PCR amplification, using 2X SuPrimeScript RT Premix (SR-3000) kit, following the manufacturer's instructions (**Table 3.1**). Also, a "no template control" NTC tube was prepared per experiment, which excludes the RNA template; instead 9 µl DEPC-treated water was included in the total.

Reaction Components	Volume
SuPrimeScript RT Premix (2X)	10 µl
Oligo(dT) ₁₈ primer (100 pmol/ µl)	1 µl
DEPC-treated H ₂ O	1 µl
Total RNA	8 µl
Total Reaction Volume	20 µl

Table 3.1. Reverse-transcription reaction components.

 $Oligo(dT)_{18}$ Primer is an 18-mer single-stranded oligonucleotide with 5' and 3' hydroxyl tails produced for use as a primer for cDNA synthesis.

The dNTP (Deoxynucleotide) mix is a pre-mixed solution that contains four nucleotides: dATP, dCTP, dGTP, and dTTP.

RNase-free DEPC-treated H₂O (diethyl pyrocarbonate-treated water) is used to minimize the risk of RNA degradation by RNases.

The thermal cycler instrument (Applied Biosystems, USA) was programmed as follows: stage 1; heating at 50°C for 60 min, stage 2; heating at 70°C for 10 min, then holding at 4°C (**Appendix F**). Following this, the tubes were inserted into the thermal cycler and the cycling program started to perform cDNA synthesis. The cDNA samples were then aliquoted and kept at (-20°C) for immediate use and it was stored at (-70°C) for long-term storage.

3.9 Primers

In the present study, the used oligonucleotide primers of KLK6 (210),

KLK10 (193), *KLK14* (211), *GAPDH* (212), and *ACTB* (213) (**Table 3.2**) were obtained from published articles. The primers were synthesized by (Macrogen, Seoul, South Korea).

Primer Name	NCBI	Primer sequence forward/reverse	Product	Type of
	Reference	(53)	Size	PCR
	Sequence		bp	
KLK6	NM_001319949.1	Forward: GAAGCATAACCTTCGGCAAA	237	Quantitative real-time PCR
(homo sapiens)		Reverse: GGGAAATCACCATCTGCTGT		
KLK10	NM_001077500.1	Forward: TCTACCCTGGCGTGGTCACC	148	Quantitative real-time
(homo sapiens)		Reverse: GCAGAGCCACAGGGGTAAACAC		PCK
KLK14	NM_022046.4	Forward: GGTCATCACTGCTGCTCACT Reverse: GTGGGTCCGGGAGTTGTAGTT	142	Quantitative real-time PCR
(homo sapiens) GAPDH (homo sapiens) "housekeeping"	NM_001289745.2	Forward: ATGGGGAAGGTGAAGGTCG Reverse: GGGTCATTGATGGCAACAATATC	107	Quantitative real-time PCR
ACTB (homo sapiens) "housekeeping"	NM_001101	Forward: ATCTGGCACCACACCTTCTACAATGAGCTGCG Reverse: CTCATACTCCTGCTTGCTGATCCACATCTGC	837	Conventional PCR

Table 3.2. Primers used in PCR amplifications.

3.10 Conventional RT-PCR

To validate the process of reverse transcription of RNA and the quality of cDNA, conventional RT-PCR was carried out using *ACTB* primers and OnePCR[™] Ultra (PCR Master Mix) kit (GeneDireX, Inc., US) according to (**Table 3.3**). A "NTC" tube was prepared per experiment.

Reaction Components	Volume	Final concentration
OnePCR TM Ultra Premix (2X)	10 µl	1X
Forward primer (10 pmol/ μ l)	1 µl	0.5 μΜ
Reverse primer (10 pmol/ µl)	1 µl	0.5 μΜ
DEPC-treated D.W.	5 µl	
cDNA Template	3 µ1	
Total Reaction Volume	20 µl	

Table 3.3. Conventional RT-PCR reaction components.

The thermal cycler (Applied Biosystems) was programmed based on the cycling conditions (**Appendix G**): stage 1; initial denaturation, heating at 94°C for 5 minutes, stage 2; amplification stage, heating at 94°C for 1 minute (denaturation step), then heating at 56°C for 1 minute (annealing step), next heating at 72°C for 1 minute (extension step), stage 2 was repeated for 35 cycles, after that stage 3; final extension for 10 minutes then holds on 4°C. The tubes were inserted into the thermal cycler and the cycling program started to perform PCR. The PCR products were stored at (-20°C). The target sequence's amplification was affirmed using 1.5% agarose gel electrophoresis.

3.11 Real-time PCR (qPCR)

The real-time quantitative PCR (qPCR) was performed using the Rotor-Gene SYBR Green PCR Kit (Qiagen, Hilden, Germany) according to (**Table 3.4**). A "NTC" tube was prepared per experiment. The Rotor-Gene Q was programmed following the cycling conditions in (**Table 3.5**).

Reaction Components	Volume/reaction	Final	
		concentration	
Rotor-Gene SYBR Green PCR Master Mix	10 µl	1X	
(2X)			
Forward primer (10 pmol/ µl)	2 µ1	1 µM	
Reverse primer (10 pmol/ μ l)	2 µ1	1 µM	
RNase-free water	4.5 µl		
cDNA Template	1.5 µl	100 ng/reaction	
Total Reaction Volume	20 µl		

Table 3.4. Real-time PCR reaction setup.

Table 3.5. Real-time PCR cycling conditions.

Step	Time	Temperature	Additional comments	
PCR initial activation step	5 min	95°C	Activation of HotStarTaq <i>Plus</i> DNA Polymerase by this heating step	
Two-step cycling- 40 times the following two steps are repeated				
Denaturation	5 sec	95°C		
Combined annealing/ extension	10 sec	60°C*	Fluorescence data collection is performed	

*According to manufacturer's guidelines; this temperature should be used for QuantiTect Primer Assays and all primer sets with a T_m well below 60°C.

Furthermore, to verify the reaction specificity of target gene amplification, the Rotor-Gene Q was programmed to conduct a melting curve analysis for the qPCR products (**Appendix H**). To ensure data reliability, all qPCR reactions were carried out twice. The PCR products were stored at (-20°C). The samples were measured and the cycle threshold (Ct values) for each PCR cycle was established by detecting fluorescence. The relative quantification method was used for the qPCR analysis. The gene expression at the mRNA level was calculated using the $(2^{-} C^{t})$ comparative CT method (214).

3.12 Agarose gel electrophoresis

The RNA samples and the PCR products were visualized by agarose gel electrophoresis (215, 216). Briefly, 1.5 g of agarose was added to 100 ml 1X TBE (Tris/Borate/EDTA) buffer solution. The mixture was boiled in a microwave with sporadic swirling until completely dissolved. The melted agarose was cooled at room temperature to about 55°C, then 10 μ L of ethidium bromide was added. The gel was placed into the tray containing the comb in its position, and it was left at room temperature for at least 20 minutes to solidify. The comb was removed gently, and the gel with the tray was placed in the electrophoresis tank containing 1X TBE buffer.

RNA samples were mixed with 6X loading dye (0.25% Bromophenol Blue, 0.25% Xylene Cyanol, 30% Glycerol) in a ratio of 1:3 (2 μ l of the dye and 6 μ l of the RNA), and they were loaded into individual gel wells. Conventional RT-PCR products had a red color as the kit contains a loading dye, so 8 μ l of the PCR product was directly loaded into the individual gel wells. An appropriate DNA ladder was loaded into a gel well to determine the specific PCR product size.

The gels were run at 60 Volts and 100 Volts for 50 min, for RNA samples and PCR products, respectively. The electrophoresis bands in the gel were visualized by a UV transilluminator with a gel documentation system and photographed.

3.13 Statistical analysis

Since the distributions of *KLK6*, *KLK10*, and *KLK14* mRNA expression levels in ALL patients and normal controls were not Gaussian, therefore an appropriate non-parametric test was used to assess the differences between the groups. The Kruskal-Wallis test was used to compare the *KLKs'* mRNA expression of all study groups namely the normal controls, the newly diagnosed ALL patients before starting chemotherapy, the patients after one month of chemotherapy, and the patients after three months of receiving chemotherapy. The Mann-Whiney *U*-test was used to compare the *KLKs'* mRNA expression of the normal controls and the ALL patients at the three conditions: on diagnosis, after one month of chemotherapy, and after three months of receiving chemotherapy. The Wilcoxon Signed-Rank test was used to compare the *KLK's* mRNA expression in ALL patients before and after chemotherapy.

Relationships between mRNA expression levels of the *KLKs* on diagnosis and the continuous variables involved in this study were evaluated by Spearman's correlation analysis (r_s). Receiver operating characteristic (ROC) analysis was used to investigate the potential diagnostic relevance of the *KLKs'* mRNA expression by plotting sensitivity against (1-specificity). The Hanley and McNeil method was used to estimate the area under the curve (AUC) (217).

Logistic regression analysis was conducted using the mRNA expressions of the *KLKs* on diagnosis as a continuous variable, for the prediction of the presence of ALL.

GraphPad Prism 8 software was used to analyze the data. In all statistical tests, a probability value less than 0.050 was defined as the level of statistical significance: (* p< 0.05, ** p<0.01, *** p< 0.001, and **** p< 0.0001). All probabilities were two-tailed.

CHAPTER FOUR

Results

Chapter Four: Results

4.1 Recruitment and deposition

A total of twenty-three newly diagnosed ALL patients, and twelve normal controls were qualified to involve in this prospective, analytical, and case-control study. Real-time qPCR relative quantification of mRNA expression of *KLK6*, *KLK10*, and *KLK14* was performed for nineteen ALL patients and all of the normal controls. The quantification of mRNA expression of the three KLKs in all the leukemic patients was carried out at three different times: when diagnosed with ALL, after one month of receiving chemotherapy, and after three months of chemotherapy.

4.2 Demographic and clinical characteristics of the study cohort

The results of this study indicated that ALL patients' age ranged from 1 to 15 years with a mean of 6.61 years (± 0.95 SE), and a median of 5.0 years. The age of the controls ranged from 2-13 years with a mean of 7.17 years (± 1.15 SE), and a median of 5.5 years. Males were dominated with 69.57% and 58.33% in the patients and controls, respectively. The two groups' age and sex were not significantly different with (p=0.72) and (p=0.71), respectively. The demographic and clinical variables of the cohort are shown in (**Table 4.1**).

Groups			Statistical	
	ALL	Controls	test	<i>p</i> -value ^e
	Patients		t/ Fisher's	
Variables	(n=23)	(n=12)	exact test	
Age				
(year; Mean ±SE)	6.61±0.95	7.17±1.15	t=0.3572	0.7233
Sex (N, %)				
Male	16 (69.57%)	7 (58.33%)	Fisher's	0.7091
Female	7 (30.43%)	5 (41.67%)	exact test	
WBC ^a				
(x10 ⁶ /ml; Mean± SE)	10.96 ± 2.829	7.543±0.6986	t=0.8591	0.3965
Lymphocytes ^b				
(x10 ⁶ /ml; Mean± SE)	7.278 ± 2.007	3.303±0.4621	t=1.411	0.1677
Serum LDH ^c	1285±270.1	NA^d	-	-
(IU/L; Mean± SE)				
ALL sub-type (N, %)				
B-ALL	18 (78.26%)	NA ^d	-	-
T-ALL	5 (21.74%)			

Table 4.1. Demographic and clinical variables of the study cohort.

The mean total WBC for the patients and controls were 10.96 and 7.543 X 10^{6} /ml, respectively, and they were not significantly different (*p*=0.3965). The mean of lymphocytes for the patients and controls were 7.28 and 3.3 X 10^{6} /ml, respectively, and they were not significantly different (*p*=0.1677). The patients' serum LDH concentration was highly increased. The diagnosis of ALL sub-type in the patients was 78.26% B-ALL and 21.74% T-ALL. The patients aged younger than 8 years were more frequent. The distribution of age groups among ALL sub-types and controls is demonstrated in (**Figure 4.1**).

These data are for the newly diagnosed ALL patients before starting chemotherapy and the control group; Reference ranges: ^a White Blood Cells (3.5-10.0) $\times 10^6$ /ml; ^b Lymphocytes count (0.5-5.0) $\times 10^6$ /ml; ^c Lactate Dehydrogenase (240-480) IU/L; ^d NA: Not Available; ^e *p* was calculated by (t) unpaired t-test or Fisher's exact test.

Figure 4.1. Distribution of age groups among ALL subtypes and controls.

4.3 Total RNA quantity and quality assessment

The concentration and purity of extracted total RNA for each sample were measured by Eppendorf Biophotometer at 260 and 280 nm. The integrity and quality of the RNA samples were also evaluated by agarose gel electrophoresis stained with ethidium bromide. Two sharp bands appeared, one of 18S rRNA and the other of 28S rRNA (ribosomal RNA). The band of 28S rRNA was more intense than 18S rRNA. This was used to evaluate the quality of total RNA samples (**Figure 4.2**).

4.4 cDNA quality assessment

The quality of cDNA samples was evaluated using conventional RT-PCR using *ACTB* primers. Expression of the *ACTB* gene was an indication that cDNA samples would be suitable to be used for performing real-time qPCR. The PCR

Figure 4.2. Agarose gel electrophoresis for total RNA samples.

This figure illustrates agarose gel electrophoresis for total RNA of selected samples: A; ALL patients on disease diagnosis, B; ALL patients after one month of receiving chemotherapy, C; ALL patients after three months of receiving chemotherapy, F; normal controls. Each lane represents RNA from its corresponding sample number; the RNA samples were loaded into a 1.5% TBE agarose gel and detected with ethidium bromide staining.

products were assessed by agarose gel electrophoresis. The primers of *ACTB* were successful in amplifying the 837 bp amplicon (**Figure 4.3**). In the negative controls, amplification of no bands was an indicator of free genomic DNA contamination.

Figure 4.3. Agarose gel electrophoresis of ACTB PCR products.

This figure illustrates agarose gel electrophoresis of *ACTB* conventional RT-PCR products for selected cDNA samples: A; ALL patients on disease diagnosis, B; ALL patients after one month of receiving chemotherapy, C; ALL patients after three months of receiving chemotherapy. M: 100bp DNA ladder. The PCR product samples were loaded into a 1.5% TBE agarose gel, expected *ACTB* amplicon size is 837 bp.

4.5 Quantitative analysis of the KLKs' mRNA expression

A quantitative real-time PCR assay was developed to measure the relative

expression of genes of interest KLK6, KLK10, and KLK14 at their mRNA level.

4.5.1 Expression of KLK6 mRNA in the cohort

KLK6 mRNA expression levels of all the studied groups were compared

relative to each other using the Kruskal-Wallis test (*p*=0.0159; Figure 4.4).

Figure 4.4. Bar-graph of *KLK6* mRNA expression in the cohort.

This graph demonstrates the distribution of *KLK6* mRNA expression in each of the normal controls, the newly diagnosed ALL patients before starting chemotherapy, the patients after one month of chemotherapy, and the patients after three months of receiving chemotherapy. *P*-values were calculated using the Kruskal-Wallis test (a) to compare the *KLK6* mRNA expression of all study groups, the Mann-Whitney *U* test (b) to compare the *KLK6* mRNA expression of the normal controls and ALL patients at the three conditions: on disease diagnosis, after one month of chemotherapy, and after three months of chemotherapy, and the Wilcoxon Signed-Rank test (c) to compare the *KLK6* mRNA expression in the ALL patients before and after treatments. *KLK6* mRNA expression in the normal controls was significantly higher than in ALL patients at the three conditions (p=0.002; p=0.0292 and p=0.0038 respectively by the Mann-Whitney *U* test).

CHAPTER FOUR

RESULTS

KLK6 mRNA expression levels in newly diagnosed ALL patients were significantly decreased compared to their levels in normal blood samples (p=0.002; **Figure 4.4**). The expression level of *KLK6* mRNA in ALL patients after one month of chemotherapy and after three months of receiving chemotherapy were significantly decreased compared to their levels in normal blood samples (p=0.0292 and p=0.0038 respectively; **Figure 4.4**).

The expression level of *KLK6* mRNA in ALL patients after one month of chemotherapy was increased compared to their level in the patients on disease diagnosis (p=0.4413; **Figure 4.4**). While the *KLK6* mRNA expression level in ALL patients after three months of chemotherapy was slightly decreased compared to their level in the patients on disease diagnosis (p=0.6794; **Figure 4.4**).

4.5.2 Expression of *KLK10* mRNA in the cohort

KLK10 mRNA expression levels of all the studied groups were compared relative to each other by the Kruskal-Wallis test (p 0.0001; Figure 4.5).

KLK10 mRNA expression levels in newly diagnosed ALL patients were significantly decreased compared to their levels in normal blood samples (p=0.0001; **Figure 4.5**). The expression level of *KLK10* mRNA in ALL patients after one month and after three months of chemotherapy was significantly

Figure 4.5. Bar-graph of KLK10 mRNA expression in the cohort.

This graph demonstrates the distribution of *KLK10* mRNA expression in each of the normal controls, the newly diagnosed ALL patients before starting chemotherapy, the patients after one month of chemotherapy, and the patients after three months of receiving chemotherapy. *P*-values were calculated using the Kruskal-Wallis test (a) to compare the *KLK10* mRNA expression of all study groups, the Mann-Whitney *U* test (b) to compare the *KLK10* mRNA expression of the normal controls and ALL patients at the three conditions: on disease diagnosis, after one month of chemotherapy, and after three months of chemotherapy, and the Wilcoxon Signed-Rank test (c) to compare the *KLK10* mRNA expression in the ALL patients before and after treatments. *KLK10* mRNA expression in the normal controls was significantly higher than in ALL patients at the three conditions (*p*=0.0001; *p* 0.0001 and *p*=0.0175 respectively by the Mann-Whitney *U* test).

decreased compared to their levels in normal blood samples (p 0.0001 and p=0.0175 respectively; Figure 4.5). The expression level of *KLK10* mRNA in ALL patients after one month of chemotherapy was decreased compared to their level in the patients on disease diagnosis (p=0.4413; Figure 4.5). While the *KLK10* mRNA expression level in ALL patients after three months of chemotherapy was increased compared to their level in the patients on disease diagnosis (p=0.0602; Figure 4.5).

4.5.3 Expression of KLK14 mRNA in the cohort

KLK14 mRNA expression levels of all the studied groups were compared relative to each other using the Kruskal-Wallis test (p 0.0001; Figure 4.6).

KLK14 mRNA expression levels in newly diagnosed ALL patients were significantly decreased compared to their levels in normal blood samples (p=0.0007; **Figure 4.6**). The expression level of *KLK14* mRNA in ALL patients after one month of chemotherapy and three months of chemotherapy were

Figure 4.6. Bar-graph of KLK14 mRNA expression in the cohort.

This graph demonstrates the distribution of *KLK14* mRNA expression in each of the normal controls, the newly diagnosed ALL patients before starting chemotherapy, the patients after one month of chemotherapy, and the patients after three months of receiving chemotherapy. *P*-values were calculated using the Kruskal-Wallis test (a) to compare the *KLK14* mRNA expression of all study groups, the Mann-Whitney *U* test (b) to compare the *KLK14* mRNA expression of the normal controls and ALL patients at the three conditions: on disease diagnosis, after one month of chemotherapy, and after three months of chemotherapy, and the Wilcoxon Signed-Rank test (c) to compare the *KLK14* mRNA expression in the ALL patients before and after treatments. *KLK14* mRNA expression in the normal controls was significantly higher than in ALL patients at the three conditions (p=0.0007; p 0.0001 and p 0.0001 respectively by the Mann-Whitney *U* test).

significantly decreased compared to their levels in normal blood samples $(p \ 0.0001 \text{ and } p \ 0.0001 \text{ respectively}; Figure 4.6).$

The *KLK14* mRNA expression level in ALL patients after one month and three months of chemotherapy were decreased compared to their level in the patients on disease diagnosis (p=0.0039 and p=0.1336 respectively; **Figure 4.6**).

4.6 Descriptive statistics of the KLKs' mRNA expression in the cohort

The data from **Table 4.2**, **Table 4.3**, and **Table 4.4** demonstrate the descriptive statistics of mRNA expression levels of *KLK6*, *KLK10*, and *KLK14*, respectively. The tables describe the mean, range, and percentile of the mRNA expressions of the *KLKs* in all the groups in the cohort.

Variables	Mean± SE ^b	Range	Percentile				
		_	25th	Median	75th		
KLK6 mRNA in							
normal controls	1.264 ± 0.2780	0.3157-3.909	0.5967	1.159	1.610		
(RQU ^a ; n=12)							
KLK6 mRNA in newly							
diagnosed ALL patients	0.5554±0.1351	0.01506-2.44	0.2343	0.3135	0.7055		
(RQU ^a ; n=19)							
KLK6 mRNA in ALL							
patients after one	0.6862±0.1403	0.03033-2.440	0.1337	0.6402	1.062		
month of chemotherapy							
(RQU ^a ; n=19)							
KLK6 mRNA in ALL							
patients after three	0.5260±0.1080	0.02622-1.749	0.1903	0.3092	0.6492		
months of							
chemotherapy							
(RQU ^a ; n=19)							
^a Relative Quantification Unit; ^b Standard Error of the mean							

Table 4.2. Descriptive statistics of *KLK6* mRNA expression.

Variables	Mean± SE ^b	Range	Percentile			
			25th	Median	75th	
KLK10 mRNA in						
normal controls	1.362 ± 0.3585	0.2934-4.629	0.5126	0.9609	1.688	
(RQU ^a ; n=12)						
KLK10 mRNA in						
newly diagnosed	0.316 ± 0.071	0.0202-1.134	0.0884	0.2089	0.5038	
ALL patients						
(RQU ^a ; n=19)						
KLK10 mRNA in						
ALL patients after	0.2375±0.0799	0.0056-1.496	0.02337	0.08367	0.3016	
one month of						
chemotherapy						
(RQU ^a ; n=19)						
KLK10 mRNA in						
ALL patients after	0.5793 ± 0.0927	0.06125-1.538	0.2484	0.5288	0.7224	
three months of						
chemotherapy						
(RQU ^a ; n=19)						
^a Relative Quantification Unit; ^b Standard Error of the mean						

Table 4.3. Descriptive statistics of *KLK10* mRNA expression.

Table 4.4. Descriptive statistics of KLK14 mRNA expression.

Variables	Mean± SE ^b	Range	Percentile				
			25th	Median	75th		
KLK14 mRNA in							
normal controls	1.906 ±0.5761	0.091-6.197	0.3935	1.155	3.455		
(RQU ^a ; n=12)							
KLK14 mRNA in							
newly diagnosed	0.2623±0.07146	0.0208-1.358	0.0572	0.1733	0.3873		
ALL patients							
(RQU ^a ; n=19)							
KLK14 mRNA in							
ALL patients after	0.0782 ± 0.0152	0.00937-0.2119	0.01953	0.05153	0.1341		
one month of							
chemotherapy							
(RQU ^a ; n=19)							
KLK14 mRNA in							
ALL patients after	0.1457±0.04312	0.00676-0.5402	0.01700	0.04612	0.2701		
three months of							
chemotherapy							
(RQU ^a ; n=19)							
^a Relative Quantification Unit; ^b Standard Error of the mean							

⁴Relative Quantification Unit; ⁶ Standard Error of the mean

4.7 Correlations between the continuous variables in ALL patients

The data from **Table 4.5**, **Table 4.6**, and **Table 4.7** demonstrate the findings of Spearman's correlation coefficient analysis of *KLK6*, *KLK10*, and *KLK14* expressions at the mRNA levels and the continuous variables in newly diagnosed ALL patients. The mRNA expression levels were not significantly correlated with patient age, lymphocyte count, WBC, and serum LDH concentration. Except for *KLK14* mRNA level was negatively correlated with WBC (r_s =-0.6, p=0.007). This investigation also observed a positive relationship between WBC and ALL patients' lymphocyte count (r_s =0.83, p 0.0001), and the patient's age and serum LDH level (r_s =0.71, p 0.001).

Table 4.5. Correlations between KLK6 mRNA expression and the

continuous variables in newly diagnosed ALL patients.

Variables	KLK6	Age	Lymphocytes	WBC ^b	LDH ^c
	(n=19)	(n=23)	(n=23)	(n=23)	(n=19)
KLK6 mRNA					
rea		0.16	-0.17	-0.17	-0.31
95% CI		-0.3338	-0.5863	-0.5892	-0.7042
75 70 CI		to	to	to	to
X7-1		0.5796	0.3248	0.3208	0.2390
p-value		0.52	0.5	0.49	0.25
Age	0.1.5		0.40	0.01	0.51
rs ^a	0.16	_	-0.48	-0.26	0.71
95% CI	-0.3338		-0.7516	-0.6148 to	0.3705
	10 0.5706		10	0.1857	10
n-Value	0.5790	_	-0.07408	0.22	0.8849
p vulue	0.32		*	0.23	0.001 **
I vmnhoevtes					
n a	-0.17	-0.48		0.83	-0.5
	-0.5863	-0.7516	-	0.6279	-0.7830
95% CI	to	to		to	to
	0.3248	-0.07408		0.9275	-0.04422
p-Value	0.5	0.02		0.0001	0.03
		*		****	*
WBC ^b					
rs ^a	-0.17	-0.26	0.83		-0.24
95% CI	-0.5892	-0.6148	0.6279		-0.6345
<i><i>JU</i> /0 CI</i>	to	to	to		to
n Valua	0.3208	0.1837	0.9275		0.2543
p-value	0.49	0.23	0.0001 ****		0.32
LDH ^c					
rea	-0.31	0.71	-0.5	-0.24	
95% CI	-0.7042	0.3705	-0.7830	-0.6345	
7570 CI	to	to	to	to	
X 7.1	0.2390	0.8849	-0.04422	0.2543	
p-Value	0.25	0.001	0.03	0.32	
		**	*		

^a Spearman's Correlation Coefficient; ^b White Blood Cells; ^c Lactate Dehydrogenase

Table 4.6. Correlations between KLK10 mRNA expression and the

continuous variables in newly diagnosed ALL patients.

Variables	<i>KLK10</i> mRNA	Age	Lymphocytes	WBC ^b	LDH ^c
	(n=19)	(n=23)	(n=23)	(n=23)	(n=19)
KLK10 mRNA					
rs ^a		-0.09	-0.10	-0.31	-0.14
95% CI		-0.5339	-0.5409	-0.6806	-0.6056
<i>)0</i> /0 CI		to	to	to	to
X7.1		0.3913	0.3830	0.1768	0.3948
p-value		0.71	0.68	0.19	0.6
Age					
r _s ^a	-0.09	-	-0.48	-0.26	0.71
95% CI	-0.5339		-0.7516	-0.6148	0.3705
	to		to	to	to
n-Valua	0.3913	-	-0.07408	0.1837	0.8849
p-value	0.71		0.02 *	0.23	0.001 **
Lymphocytes					
r ^a	-0.10	-0.48		0.83	-0.50
05% CI	-0.5409	-0.7516		0.6279	-0.7830
95 /0 CI	to	to		to	to
X7 1	0.3830	-0.07408		0.9275	-0.04422
p-Value	0.68	0.02		0.0001	0.03
		*		****	*
WBC ^b	-0.31	-0.26	0.83		-0.24
r _s ^a	-0.6806	-0.6148	0.6279		-0.6345
95% CI	to	to	to		to
	0.1/68	0.1837	0.9275		0.2543
p-Value	0.19	0.23	U.UUU1 ****		0.32
LDH ^c	-0.14	0.71	-0.50	-0.24	
r.ª	-0.6056	0.3705	-0.7830	-0.6345	
05% CI	to	to	to	to	
93 /0 CI	0.3948	0.8849	-0.04422	0.2543	
	0.6	0.001	0.03	0.32	
p-Value		**	*		

^a Spearman's Correlation Coefficient; ^b White Blood Cells; ^c Lactate Dehydrogenase

Table 4.7. Correlations between KLK14 mRNA expression and the

continuous variables in newly diagnosed ALL patients.

Variables	<i>KLK14</i> mRNA (n=10)	Age	Lymphocytes	WBC^b	LDH^{c}
	(11-19)	(11-23)	(11-23)	(11-23)	(11-19)
KLK14 MKNA		0.06	0.33	0.60	0.31
rs ^a		0.00	0.6877	0.00	0.7091
95% CI		-0.4202	-0.0077	-0.0514	-0.7091
		0 5087	0 1640	-0.1816	0 2297
p-Value		0.82	0.17	0.007 **	0.23
Age	0.06		-0.48	-0.26	0.71
	-0.4202	-	-0.7516	-0.6148	0.3705
95% CI	to		to	to	to
	0.5087		-0.07408	0.1837	0.8849
p-Value	0.82		0.02 *	0.23	0.001 **
Lymphocytes					
rs ^a	-0.33	-0.48		0.83	-0.50
95% CI	-0.6877	-0.7516		0.6279	-0.7830
75 70 CI	to	to		to	to
	0.1640	-0.07408		0.9275	-0.04422
p-value	0.17	0.02 *		0.0001 ****	0.03 *
WBC ^b	-0.60	-0.26	0.83		-0.24
rs ^a	-0.8314	-0.6148	0.6279		-0.6345
95% CI	to	to	to		to
<i>)0</i> /0 CI	-0.1816	0.1837	0.9275	-	0.2543
n Valua	0.007	0.23	0.0001		0.32
p-value	**	0.51	****	0.04	
LDH ^c	-0.31	0.71	-0.50	-0.24	
r s ^a	-0.7091	0.3705	-0.7830	-0.6345	
95% CI	to			to	
	0.2297	0.8849	-0.04422	0.2343	
p-Value	0.23	**	*	0.52	

^a Spearman's Correlation Coefficient; ^bWhite Blood Cells; ^c Lactate Dehydrogenase

4.8 ROC curves for sensitivity and specificity of the KLKs

Besides quantification of mRNA expression of *KLK6*, *KLK10*, and *KLK14*; the diagnostic accuracy of the genes in ALL was evaluated by receiver operating characteristic (ROC) analysis. The area under the ROC curve (AUC) was achieved from the plotting of sensitivity versus (1-specificity), and the optimal diagnostic cutoff point was revealed.

4.8.1 Diagnostic evaluation of KLK6 mRNA expression in ALL

The ROC curve in **Figure 4.7** illustrated that *KLK6* mRNA expression could very efficiently discriminate ALL from normal counterparts (AUC =0.822, 95% CI=0.6735-0.9713, SE=0.076, p=0.0029). The ROC curve analysis revealed that 0.7614 RQU is the best diagnostic cutoff value. The sensitivity of this cutoff value was 84.21%, whereas the method's specificity was 75.0%.

Figure 4.7. ROC curve for KLK6 mRNA expression.

Receiver operating characteristic (ROC) analysis for quantified *KLK6* mRNA expression. It reveals that *KLK6* can be applied to diagnose ALL and discriminate it from normal controls; AUC, Area Under Curve.

4.8.2 Diagnostic evaluation of KLK10 mRNA expression in ALL

The ROC curve in **Figure 4.8** illustrated that *KLK10* mRNA expression could very efficiently discriminate ALL from normal counterparts (AUC =0.886, 95% CI=0.7720-1.000, SE=0.0582, p=0.0004). The ROC curve analysis revealed that 0.5399 RQU is the best diagnostic cutoff value. The sensitivity of this cutoff value was 89.47%, whereas the method's specificity was 75.0%.

Figure 4.8. ROC curve for KLK10 mRNA expression.

Receiver operating characteristic (ROC) analysis for quantified *KLK10* mRNA expression. It reveals that *KLK10* can be applied to diagnose ALL and discriminate it from normal controls; AUC, Area Under Curve.

4.8.3 Diagnostic evaluation of KLK14 mRNA expression in ALL

The ROC curve in Figure 4.9 illustrated that KLK14 mRNA expression

could very efficiently discriminate ALL from normal counterparts (AUC =0.851,

95% CI=0.7087-0.9931, SE=0.0726, p=0.0012). The ROC curve analysis

Figure 4.9. ROC curve for KLK14 mRNA expression.

Receiver operating characteristic (ROC) analysis for quantified *KLK14* mRNA expression. It reveals that *KLK14* can be applied to diagnose ALL and discriminate it from normal controls; AUC, Area Under Curve.

revealed that 0.5402 RQU is the best diagnostic cutoff value. The sensitivity of

this cutoff value was 94.74%, whereas the method's specificity was 66.67%.

4.9 Logistic regression analysis for the KLKs' mRNA expression

To further investigate the discriminatory significance of *KLK6*, *KLK10*, and *KLK14* mRNA expression, their quantified expression was used as a continuous variable to construct a univariate logistic regression model to predict the presence of ALL.

4.9.1 Logistic regression model for KLK6 mRNA expression

Univariate logistic regression analysis demonstrated that patients with reduced *KLK6* mRNA expression levels establish a significant prognostic marker for ALL (crude odds ratio [OR]=0.2289, 95% CI=0.04428-0.7544, p=0.0115).

4.9.2 Logistic regression model for KLK10 mRNA expression

Univariate logistic regression analysis demonstrated that patients with reduced *KLK10* mRNA expression levels establish a significant prognostic marker for ALL (crude odds ratio [OR]=0.0228, 95% CI= 0.0008851-0.2299, *p* 0.0001).

4.9.3 Logistic regression model for KLK14 mRNA expression

Univariate logistic regression analysis demonstrated that patients with reduced *KLK14* mRNA expression levels establish a significant prognostic marker for ALL (crude odds ratio [OR]=0.0716, 95% CI=0.003912-0.4610, p=0.0002).

Discussion

DISCUSSION

Chapter Five: Discussion

Biomarkers are biomolecules detected in body fluids or tissues that may indicate normal or pathological activity (6). Biomarkers are classified into many categories based on their use and molecular changes. Tumor biomarkers indicate the presence of cancer, which could be nucleic acids, proteins, cells, metabolites, or processes such as proliferation, angiogenesis, or apoptosis. They could serve diagnostic, prognostic, and/or monitoring biomarkers (218). Acute as lymphoblastic leukemia (ALL) is the most common hematological malignancy diagnosed in children. In ALL, precursor lymphoblasts are obstructed at an early stage of differentiation, proliferate quickly, and displace normal bone marrow hematopoietic cells (57). Despite the favorable survival rates of childhood ALL, it is essential to have sensitive and specific molecular biomarkers for the diagnosis and prognosis of the disease; assign better risk classification, and consequently clinical results. Accumulative evidence better robustly demonstrated that kallikrein-related peptidases have a wide interest in clinical oncology (219). They serve as diagnostic and/or prognostic biomarkers in diverse human cancers such as prostate (7, 220), breast (221, 222), ovarian (223, 224), lung (225), colorectal (175, 193), and gastric cancer (226). Nevertheless, the research into the effects of KLKs on cancer is currently ongoing, and the investigation of other members of the KLK group in hematological malignancies has not been tested.

DISCUSSION

5.1 Kallikrein-related peptidases in hematological malignancies

Human kallikrein-related peptidases designate a group of fifteen functional genes of serine proteases on chromosome 19q13.3-13.4. Few papers have been published investigating kallikreins in hematological malignancies: in 2004, Roman-Gomez, J. et al for the first time found that KLK10 expression was strongly reduced at mRNA level in precursor B-cell ALL and 69% of samples diagnosed with ALL. Moreover, the study found loss of expression in KLK10 due to hypermethylation in ALL cell lines compared to normal cell lines and proposed it as a factor for an unfavorable prognosis in childhood ALL (188). Down expression of *KLK10* in ALL has been reported in other studies (123, 154, 227, 228). In 2014, Kashuba demonstrated that chronic lymphocytic leukemic cells express constituents for the kinin-kallikrein system signaling pathway. In the study kininogen, an important protein of the kinin-kallikrein system was overexpressed and associated with CLL prognosis (229). In 2015, for the first time, KLKB1 expression was investigated by Adamopoulos et al who discovered a significant increase in *KLKB1* mRNA expression in CLL patients and very efficiently distinguished from healthy blood donors (230). In 2016, KLK5-9 transcripts were analyzed in distinct cancerous human tissues including leukemia via nested reverse transcription PCR (177). In 2016, for the first time, KLK14 expression was examined by Kontos et al found a strong overexpression of

KLK14 mRNA in CLL patients than in the normal population and related to poor prognosis in CLL (231).

Treatment of pediatric ALL patients has shown vast progress over the past decades, increasing considerations of remission rates and prognosis of the patients. Nevertheless, some patients regardless of presenting favorable clinical characteristics may be overtreated or suffered from unpleasant outcomes (66, 232). The discovery of new prognostic biomarkers is essential to predict the patients' outcomes and monitor their response to therapy.

Thus, the present study aimed to quantify mRNA expression levels of the kallikrein-related peptidases: *KLK6*, *KLK10*, and *KLK14* in newly diagnosed childhood ALL patients and healthy control blood donors utilizing an accurate and sensitive real-time qPCR predicated on SYBR Green chemistry. Besides, to assess their potential diagnostic and/or prognostic biomarker suitability for acute lymphoblastic leukemia. In addition, to evaluate alterations in mRNA expression levels of *KLK6*, *KLK10*, and *KLK14* in childhood ALL patients who received one month and then three months of chemotherapy.

DISCUSSION

5.2 Evaluation of *KLK6* **mRNA expression as a potential biomarker in pediatric ALL**

In this study, the differential diagnostic usefulness of the KLK6 mRNA expression was investigated using qPCR. This study found that KLK6 mRNA expression levels were considerably reduced in ALL patients compared to normal blood samples (p=0.002; Figure 4.4; Table 4.2). The differential diagnostic value was demonstrated via ROC curve analysis (AUC =0.822, 95% CI=0.6735-0.9713, SE=0.076, p=0.0029; Figure 4.7). The ROC curve results illustrated that KLK6 mRNA expression could very efficiently discriminate ALL from normal counterparts, the optimal diagnostic cutoff value was revealed to be 0.7614 RQU. Using this cutoff value, the method's sensitivity was 84.21%, and its specificity was 75.0%. This establishes that KLK6 mRNA expression could serve as a diagnostic biomarker for ALL. Univariate logistic regression analysis confirmed that patients with reduced KLK6 mRNA expression are more possible to suffer from ALL ([OR]=0.2289, 95% CI=0.04428-0.7544, p=0.0115). This establishes that a reduction in *KLK6* mRNA expression could be a prognostic biomarker for ALL. This investigation also found that KLK6 mRNA expression levels were significantly downregulated in ALL patients after one month and after three months of chemotherapy compared to their levels in normal blood samples (p=0.0292 and p=0.0038 respectively; Figure 4.4, Table 4.2). The expression level of KLK6 mRNA in ALL patients after one month of chemotherapy was overregulated compared to their level in the patients on disease diagnosis

(p=0.4413; Figure 4.4, Table 4.2). Whereas the *KLK6* mRNA expression level in ALL patients after three months of chemotherapy was slightly downregulated compared to their level in the patients on disease diagnosis (p=0.6794; Figure 4.4, Table 4.2).

KLK6 mRNA expression is differentially regulated and contributed to unfavorable prognostic tumor biomarkers, for instance, downregulation of KLK6 mRNA expression was detected in breast cancer, and contributed as a prognostic tumor marker depending on the cancer grade (174, 233, 234). KLK6 protein has a function in the invasion and metastasis of malignant tumors (235). KLK6 mRNA and protein overexpression was found as potential prognostic indicators of gastric malignancy (226, 236). KLK6 mRNA and protein are expressed in ovarian cancer. This protein overexpression was found as a diagnostic and prognostic biomarker of ovarian cancer (237, 238). KLK6 mRNA and protein overexpression was shown as significant screening and prognostic biomarkers in colorectal adenocarcinoma (175, 239, 240). KLK6 protein is overexpressed and considered a poor prognostic biomarker in non-small cell lung cancer (225). In 2016, KLK5-9 transcripts were analyzed in distinct cancerous human tissues including leukemia via nested reverse transcription PCR (177).

KLK6 is a serine protease, that involved a proteolytic cascade. CNS is rich with KLK6 cleaving the amyloid precursor protein in perineuronal net places and the extracellular matrix and it is a potential element of Alzheimer's disease

pathogenesis (183). KLK6 protein expression is associated with immune cell survival by a molecular mechanism through stimulation of protease activated receptor-1 (PAR-1) in neurons (241, 242). PAR-1 was suggested to be significant for a variety of immunological responses that depend on homeostasis maintenance and immune clearance apoptosis (242).

Protease activated receptor-1 (PAR-1) is a transmembrane G-coupled prototypic receptor that is stimulated by thrombin and other serine proteases including kallikreins (KLK5, KLK6, and KLK14) is being correlated with various physiological and pathological processes (243, 244). PAR-1 plays potential roles in promoting tumor cell proliferation, infiltration, and metastasis, stimulated by tumor-derived serine proteases and matrix metalloproteinases (245, 246). PAR-1 is upregulated in a variety of human cancers including leukemia, colon, prostate, breast, and ovarian cancer (247). PAR-1 is drastically overexpressed in aggressive acute leukemia subtypes and influences blast cells to egress from bone marrow to peripheral blood (248). PAR-1 expression denotes an unfavorable prognostic biomarker at diagnosis of childhood ALL (249). PAR-1 is involved in leukemogenesis as well as it has an ultimate role in the eradication of primitive leukemia stem cells in AML (250).

It was examined that active KLKs produced by tumors and inflamed tissues can have hormonal features and that their proteolytic ability is regulated by proteinase inhibitors that can be found in cancer-related fluids (251). The

potential role of KLKs in hormone-processing was suggested; it was reported that KLK5-8, and KLK10-14, are released in the human pituitary gland, located with the growth hormone, and KLK5, KLK6, and KLK14 potentially contribute to this hormone's proteolytic degradation into functional fragments (252).

5.3 Evaluation of *KLK10* mRNA expression as a potential biomarker in pediatric ALL

In this study, the differential diagnostic usefulness of the KLK10 mRNA expression was investigated using qPCR. This study found that KLK10 mRNA expression levels were considerably reduced in ALL patients compared to normal blood samples (p=0.0001; Figure 4.5; Table 4.3). The differential diagnostic value was demonstrated via ROC curve analysis (AUC =0.886, 95% CI=0.7720-1.000, SE=0.0582, p=0.0004; Figure 4.8). The ROC curve results illustrated that KLK10 mRNA expression could very efficiently discriminate ALL from normal counterparts, the optimal diagnostic cutoff value was revealed to be 0.5399 RQU. Using this cutoff value, the method's sensitivity was 89.47%, and its specificity was 75.0%. This establishes that KLK10 mRNA expression could serve as a diagnostic biomarker for ALL. Univariate logistic regression analysis confirmed that patients with reduced KLK10 mRNA expression are more possible to suffer from ALL ([OR]=0.0228, 95% CI=0.0008851-0.2299, p 0.0001). This establishes that a reduction in KLK10 mRNA expression could be a prognostic biomarker for ALL. This investigation also found that *KLK10* mRNA expression

DISCUSSION

levels were significantly downregulated in ALL patients after one month and after three months of chemotherapy compared to their levels in normal blood samples (p 0.0001 and p=0.0175 respectively; Figure 4.5, Table 4.3). The expression level of *KLK10* mRNA in ALL patients after one month of chemotherapy was slightly downregulated compared to their level in the patients on disease diagnosis (p=0.4413; Figure 4.5, Table 4.3). Whereas the *KLK10* mRNA expression level in ALL patients after three months of chemotherapy was overregulated compared to their level in the patients on disease diagnosis (p=0.0602; Figure 4.5, Table 4.3).

In 1996, the *KLK10* gene was characterized as a possible tumor-suppressor gene; and its down expression in breast cancer cell lines was observed (253). *KLK10* mRNA expression was analyzed in breast tissues by in situ hybridization; found further supportive results of the decrease of expression in breast malignant tissues compared to normal samples (189). This down-expression was proposed due to *KLK10* exon-3 methylation (254). *KLK10* is associated with four CpG islands, the largest one is located on exon 3 of the gene (255). These studies linked CpG island hypermethylation and down expression of KLK10 at both mRNA and protein levels (256). *KLK10* transcriptional silencing is associated with hypermethylation of CpG islands within promoter or gene coding regions. (254). *KLK10* inhibits carcinogenesis and is considered a tumor suppressor gene. It was examined that hypermethylation of *KLK10* CpG island plays a crucially

DISCUSSION

significant role in tumor-specific loss and down expressions of KLK10 mRNA and protein in ALL, breast, and prostate cancers (130, 188, 254, 257, 258). In early breast cancer patients, methylation of the gene's third exon possessed a prognostic value (258). Reduction in KLK10 mRNA expression in precursor Bcell ALL was proposed as a factor for an unfavorable prognosis in ALL (188). Previous studies also found that the KLK10 gene is over-expressed by steroid hormones via binding to their receptors which act as a binding molecule to activate or suppress transcription (186). KLK10 protein overexpression is observed in ovarian tumors that correlates to its elevation in the serum and possesses a significant value as tissue and serological markers for diagnosis. prognosis, and monitoring of ovarian cancer (195, 224, 259-261). It was reported that *KLK10* overexpression could serve as a diagnostic and prognostic biomarker for pancreatic and colorectal cancers (193, 194, 262-264). It was observed that overexpression of *KLK10* mRNA is an independent biomarker for predicting poor prognosis in gastric cancer, whereas urinary KLK10 protein could also play a non-invasive marker to predict inoperable and incurable gastric cancer (265, 266).

DISCUSSION

5.4 Evaluation of *KLK14* mRNA expression as a potential biomarker in pediatric ALL

In this study, the differential diagnostic usefulness of the KLK14 mRNA expression was investigated via qPCR. This study found that KLK14 mRNA expression levels were considerably reduced in ALL patients compared to normal blood samples (p=0.0007; Figure 4.6; Table 4.4). The differential diagnostic value was demonstrated via ROC curve analysis (AUC =0.851, 95% CI=0.7087-0.9931, SE=0.0726, p=0.0012; Figure 4.9). The ROC curve results illustrated that KLK14 mRNA expression could very efficiently discriminate ALL from normal counterparts, the optimal diagnostic cutoff value was revealed to be 0.5402 RQU. Using this cutoff value, the method's sensitivity was 94.74%, and its specificity was 66.67%. This establishes that KLK14 mRNA expression could serve as a diagnostic biomarker for ALL. Univariate logistic regression analysis confirmed that patients with reduced KLK14 mRNA expression are more possible to suffer from ALL ([OR]=0.0716, 95% CI=0.003912-0.4610, p=0.0002). This establishes that a reduction in *KLK14* mRNA expression could be a prognostic biomarker for ALL. This investigation also found that KLK14 mRNA expression levels were significantly downregulated in ALL patients after one month and three months of chemotherapy compared to their levels in normal blood samples (p 0.0001 and p 0.0001 respectively; Figure 4.6, Table 4.4). The expression level of KLK14 mRNA in ALL patients after one month of chemotherapy was significantly downregulated compared to their level in the patients on disease diagnosis

DISCUSSION

(p=0.0039; Figure 4.6, Table 4.4). The *KLK14* mRNA expression level in ALL patients after three months of chemotherapy was downregulated compared to their level in the patients on disease diagnosis (p=0.1336; Figure 4.6, Table 4.4).

KLK14 gene is positioned at 19q13.4 within the human kallikrein locus. KLK14 protein is a serine protease with trypsin-like substrate specificity (198). *KLK14* differential expression was reported as potential diagnostic and/or prognostic biomarkers in ovarian, breast, testicular, prostate, and colorectal malignancies. It was reported that KLK14 plays a marker of a promising outcome of ovarian cancer (196). Elevation of its mRNA level has been implicated with lower cancer stage, reduced tumor grade, optimal residual tumor size, better cancer-free survival, and overall survival (108). The National Academy of Clinical Biochemistry (NACB) Laboratory Medicine Practice has designated KLK14 as a serum marker with clinical utility in ovarian cancer differential diagnosis, prognostic prediction, and tumor monitoring with the level of evidence (LOE) of IV and/or V (267, 268).

It was reported that the downregulation of *KLK14* gene expression is a potential biomarker linked with a poor prognosis for breast cancer (196, 222, 269). It was also assessed that the gene plays a possible independent diagnostic marker in breast tumor biopsies (270). Furthermore, it was found that *KLK14* expression could serve as a predicting biomarker for chemotherapy response in breast cancer (211). Downregulation of *KLK14* gene expression in testicular germ

DISCUSSION

cell tumors was observed (192, 271). Quantification of KLK14 mRNA and protein levels in the cancerous and non-cancerous prostate tissues was found to be downregulated by androgen receptor signaling and associated with aggressiveness of the tumor suggesting an unfavorable prognosis of the disease (272-275). Colonic cancers produce KLK14 protein, which activates proteaseactivated receptor-2 (PAR-2) by signaling human colon cancer cells (276). PAR-2 is a G protein-coupled receptor stimulated by intramolecular binding of a tethered ligand which is liberated by the proteases, primarily of the serine protease group including trypsin and kallikreins (KLK2/4/5/6/14) (277). PAR-2 works as a cell surface sensor for various extracellular and cell surface-associated proteases (278). It was observed that overexpression of KLK14 protein in cytosolic extracts from colorectal cancer tissues was significantly correlated with patients' overall survival, and it was established as a significant prognostic biomarker in staging and grading of the disease (279). Also, its upregulation at the mRNA level can be considered a marker of unfavorable prognosis for patients with colorectal cancer; have discriminatory power between colorectal cancer and adenoma patients (205). Upregulation of KLK14 mRNA in CLL patients was observed to be associated with an unfavorable prognosis of the disease (231).

DISCUSSION

5.5 Assessment of the correlations between the continuous variables in ALL patients

The outcomes of the Spearman's correlation coefficient analysis of the mRNA expression levels of *KLK6*, *KLK10*, and *KLK14* and the continuous variables in newly diagnosed ALL patients revealed that there was no significant correlation between the mRNA expression levels and the patient's age, lymphocyte count, WBC, and serum LDH concentration. Except for *KLK14* mRNA level was negatively correlated with WBC (r_s =-0.6, p=0.007). The present study found a positive relationship between WBC and ALL patients' lymphocyte count (r_s =0.83, p 0.0001). Patients with ALL frequently have an increase in lymphocytes (280). Also, there was a positive correlation between the patient's age and serum LDH level (r_s =0.71, p 0.001). This is in line with past research on adults (281).

5.6 Limitation and strength of the study

The present investigation has certain limitations as well as some strengths. A small number of individuals qualified for the inclusion criteria of the study leads to a decrease in the sample size of the study. Some of the pediatric individuals refused to participate in the study because venipuncture is an invasive procedure for children. The study could not continue to follow up the ALL patients to examine the mRNA expression levels of *KLK6*, *KLK10*, and *KLK14* after receiving the latter phases of chemotherapy because the duration of the

DISCUSSION

present study was limited. A large percentage of samples could not be examined due to a lack of resources and the high cost of qPCR analyses in our country.

This study was successful to identify between ALL and the control group as demonstrated by ROC curve analysis, which showed that KLK6, KLK10, and KLK14 mRNA expression levels have a favorable diagnostic utility in ALL. In addition, according to univariate logistic regression analysis patients with downregulated KLK6, KLK10, and KLK14 mRNA expression are more likely to develop ALL. This establishes that reduction in KLK6, KLK10, and KLK14 mRNA expression could be considerable prognostic biomarkers for ALL. This is the first analysis to investigate KLK6, KLK10, and KLK14 mRNA expression in pediatric ALL patient samples after induction and three months of receiving chemotherapy. Changes in the KLK6, KLK10, and KLK14 expression profiles after one month and three months of receiving chemotherapy could suggest that the patients were responding to treatment, and the KLK6, KLK10, and KLK14 expression profiles could have an impact on disease outcome and could be targeted therapeutically.

5.7 Conclusions

The results of the present study conclude the followings:

1. The mRNA expression levels of *KLK6*, *KLK10*, and *KLK14* in ALL patients were significantly reduced compared to normal blood samples.

2. The mRNA expression levels of *KLK6*, *KLK10*, and *KLK14* revealed significant diagnostic value to distinguish ALL patients from normal counterparts.

3. The reduction in mRNA expression levels of *KLK6*, *KLK10*, and *KLK14* was found to be significant prognostic molecular biomarkers for ALL.

4. The mRNA expression of the genes of interest in newly diagnosed childhood ALL patients was not significantly proportional to patient age, lymphocyte count, WBC, and serum LDH concentration. Except for *KLK14* mRNA level significantly had a negative correlation with WBC.

5. Expression of *KLK6*, *KLK10*, and *KLK14* at mRNA levels was significantly downregulated in ALL patients after one month and three months of receiving chemotherapy compared to their levels in normal blood samples.

6. Thus, this study suggests that *KLK6*, *KLK10*, and *KLK14* mRNA expression levels could be used as molecular biomarkers in the diagnosis and prognosis of ALL. In addition, the expression profile of the *KLKs* could be utilized to predict how well ALL patients respond to chemotherapy.

DISCUSSION

5.8 Recommendations

The followings are the suggested additional future research based on the findings of this study:

1. Further study on a larger scale of ALL patients and normal blood donors are required to see whether quantification of mRNA expressions of *KLK6*, *KLK10*, and *KLK14* in peripheral blood samples could be utilized in clinical practice to diagnose and predict the presence of ALL.

2. A longer time-schedule follow-up of the patients is required for a more clinical evaluation of the *KLK6*, *KLK10*, and *KLK14* mRNA expression for ALL patients' prognosis and response to chemotherapy.

3. Since mRNA expressions of *KLK6* and *KLK14* in ALL have not been examined before, no prognostic cutoff values were suggested. It is required to categorize their mRNA expression levels and investigate their prognostic significance in ALL.

4. Since levels of mRNA expression of *KLK6*, *KLK10*, and *KLK14* in ALL pediatric patients have been studied for the first time after induction therapy and three months of chemotherapy, further investigations are required to see whether the expression profile of the genes of interest could have the potential to influence disease outcomes and to be therapeutically targeted.

References

References

1. Siegel RL, Miller KD, Jemal A. Cancer statistics. CA: a cancer journal for clinicians. 2016; 66(1): 7-30.

2. Gupta N, Pawar R, Banerjee S, Brahma S, Rath A, Shewale S, et al. Spectrum and Immunophenotypic Profile of Acute Leukemia: A Tertiary Center Flow Cytometry Experience. Mediterr J Hematol Infect Dis. 2019; 11(1): e2019017.

3. Moorman AV. New and emerging prognostic and predictive genetic biomarkers in B-cell precursor acute lymphoblastic leukemia. Haematologica. 2016; 101(4): 407.

4. Kryza T, Silva ML, Loessner D, Heuzé-Vourc'h N, Clements JA. The kallikrein-related peptidase family: Dysregulation and functions during cancer progression. Biochimie. 2016; 122: 283-299.

5. Duffy MJ. Clinical use of tumor biomarkers: an overview. Klin Biochem Metab. 2017; 25(46): 157-161.

6. Chang JY, Ladame S. Diagnostic, prognostic, and predictive biomarkers for cancer. Bioengineering Innovative Solutions for Cancer: Elsevier; 2020. p. 3-21, 3-21.

7. Moradi A, Srinivasan S, Clements J, Batra J. Beyond the biomarker role: prostate-specific antigen (PSA) in the prostate cancer microenvironment. Cancer and Metastasis Reviews. 2019; 38(3): 333-346.

 Lippincott W, Wilkins. Pathophysiology made incredibly easy!
 Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health; 2013. 411-413.

9. Green AR. Postgraduate haematology: John Wiley & Sons; 2010. 380-382.

10. Kumar V, Abbas AK, Aster JC. Robbins basic pathology e-book: Elsevier Health Sciences; 2017. 471-474.

REFERENCES

11. Navarrete M, Rossi E, Brivio E, Carrillo JM, Bonilla M, Vasquez R, et al. Treatment of childhood acute lymphoblastic leukemia in central America: A lower-middle income countries experience. Pediatric blood & cancer. 2014; 61(5): 803-809.

12. Terwilliger T, Abdul-Hay M. Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood cancer journal. 2017; 7(6): e577-e577.

13. Reaman GH, Smith FO. Childhood leukemia: Springer; 2014. 7-11.

14. Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children. New England Journal of Medicine. 2015; 373(16): 1541-1552.

15. Alwan N, Kerr D. Cancer control in war-torn Iraq. The Lancet Oncology.2018; 19(3): 291-292.

16. Khoshnaw N, Mohammed HA, Abdullah DA. Patterns of cancer in Kurdistan-results of eight years cancer registration in Sulaymaniyah Province-Kurdistan-Iraq. Asian Pac J Cancer Prev. 2015; 16(18): 8525-8531.

17. Belson M, Kingsley B, Holmes A. Risk Factors for Acute Leukemia in Children: A Review. Environmental Health Perspectives. 2007; 115(1): 138-145.

18. Cangerana Pereira FA, Mirra AP, de Oliveira Latorre D, do Rosário M, de Assunção JV. Environmental risk factors and acute lymphoblastic leukaemia in childhood. Revista Ciencias de la Salud. 2017; 15(1): 129-144.

19. Kumar A1 VM, Rathee R. Maternal Factors and Risk of Childhood Leukemia. Asian Pacific Journal of Cancer Prevention. 2014; 15 (2): 781-784.

20. Schüz J, Erdmann F. Environmental Exposure and Risk of Childhood Leukemia: An Overview. Archives of Medical Research. 2016; 47(8): 607-614.

21. Greaves M. A causal mechanism for childhood acute lymphoblastic leukaemia. Nature Reviews Cancer. 2018; 18(8): 471-484.

REFERENCES

22. Bennett JM, Catovsky D, Daniel M-T, Flandrin G, Galton DAG, Gralnick HR, et al. Proposals for the Classification of the Acute Leukaemias French-American-British (FAB) Co-operative Group. British Journal of Haematology. 1976; 33(4): 451-458.

23. Chiaretti S, Zini G, Bassan R. Diagnosis and subclassification of acute lymphoblastic leukemia. Mediterranean journal of hematology and infectious diseases. 2014; 6(1): e2014073-e2014073.

24. Pizzo PA, Poplack DG. Principles and practice of pediatric oncology: Lippincott Williams & Wilkins; 2015. 319-320.

25. Snower D, Smith B, Munz U, McPhedran P. Reevaluation of the periodic acid-Schiff stain in acute leukemia with immunophenotypic analyses. Arch Pathol Lab Med. 1991; 115(4): 346-350.

26. Tricot G, Orshoven AB-V, Hoof AV, Verwilghen RL. Sudan Black B positivity in acute lymphoblastic leukaemia. British Journal of Haematology. 1982; 51(4): 615-621.

27. Wright S, Chucrallah A, Chong YY, Kantarjian H, Keating M, Albitar M. Acute lymphoblastic leukemia with myeloperoxidase activity. American Journal of Hematology. 1996; 51(2): 147-151.

28. Drexler HG. The leukemia-lymphoma cell line factsbook: Academic Press;2000. 28-32.

29. Vasconcelos de Andrade Alves G, Araújo da Cunha Fernandes AL, Freire JM, de Souza Paiva A, de Vasconcelos RC, Soraya de Farias Sales V, et al. Flow Cytometry Immunophenotyping Evaluation in Acute Lymphoblastic Leukemia: Correlation to Factors Affecting Clinic Outcome. Journal of Clinical Laboratory Analysis. 2012; 26(6): 431-440.

30. Bene MC, Castoldi G, Knapp W, Ludwig WD, Matutes E, Orfao A, et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). 1995/10//1995. p. 1783-1786.

31. Kato M. Pediatric Acute Lymphoblastic Leukemia: Springer Singapore; 2019. 29-35.

32. Purwanto YM, Gunawan S, Nafianti S, Purnomosari D, Intansari US, Westra G, et al. Immunophenotypic patterns of childhood acute leukemias in Indonesia. Asian Pacific Journal of Cancer Prevention. 2011; 12: 3381-3387.

33. Bachir F, Bennani S, Lahjouji A, Cherkaoui S, Khattab M, Nassereddine I, et al. Characterization of acute lymphoblastic leukemia subtypes in Moroccan children. International journal of pediatrics. 2009; 2009.

34. Uday R. Popat MDMFF, Jame Abraham MDF. Leukemia: Springer Publishing Company; 2011.

35. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016; 127(20): 2391-2405.

36. Nordlund J, Syvänen A-C. Epigenetics in pediatric acute lymphoblastic leukemia. Seminars in Cancer Biology. 2018; 51: 129-138.

37. Iacobucci I, Mullighan CG. Genetic basis of acute lymphoblastic leukemia. Journal of Clinical Oncology. 2017; 35(9): 975.

38. Mullighan CG. Molecular genetics of B-precursor acute lymphoblastic leukemia. The Journal of Clinical Investigation. 2012; 122(10): 3407-3415.

39. Guenova M, Balatzenko G. Leukemia: IntechOpen; 2013. 3-10.

40. Bernbeck B, Wüller D, Janssen G, Wessalowski R, Göbel U, Schneider D. Symptoms of childhood acute lymphoblastic leukemia: red flags to recognize leukemia in daily practice. Klinische Pädiatrie. 2009; 221(06): 369-373.

41. Collado L, Dardanelli E, Sierre S, Moguillansky S, Lipsich J. Asymptomatic leukemic-cell infiltration of the pancreas: US findings. Pediatric Radiology. 2011; 41(6): 779-780.

REFERENCES

42. Lenk L, Alsadeq A, Schewe DM. Involvement of the central nervous system in acute lymphoblastic leukemia: opinions on molecular mechanisms and clinical implications based on recent data. Cancer metastasis reviews. 2020; 39(1): 173-187.

43. Davies JH, Evans BAJ, Jenney MEM, Gregory JW. Skeletal morbidity in childhood acute lymphoblastic leukaemia. Clinical Endocrinology. 2005; 63(1): 1-9.

44. Narang V, Dhiman A, Garg B, Sood N. Female genital tract involvement in acute lymphoblastic leukemia: a rare case report. Journal of clinical and diagnostic research: JCDR. 2016; 10(12): ED09.

45. Ebert EC, Hagspiel KD. Gastrointestinal manifestations of leukemia. Journal of gastroenterology and hepatology. 2012; 27(3): 458-463.

46. Onciu M. Acute lymphoblastic leukemia. Hematology/oncology clinics of North America. 2009; 23(4): 655-674.

47. Hutter JJ. Childhood leukemia. Pediatr Rev. 2010; 31.

48. Roganovic J. Acute lymphoblastic leukemia in children. InTech Open. 2013: 39-74.

49. Hamid GA. Acute Leukemia Clinical Presentation. Leukemia. 2013: 75.

50. Joshi MD, Karode AH, Suralkar S. White blood cells segmentation and classification to detect acute leukemia. International Journal of Emerging Trends & Technology in Computer Science (IJETTCS). 2013; 2(3): 147-151.

51. Nguyen TV, Melville A, Nath S, Story C, Howell S, Sutton R, et al. Bone Marrow Recovery by Morphometry during Induction Chemotherapy for Acute Lymphoblastic Leukemia in Children. PloS one. 2015; 10(5): e0126233.

52. Malempati S, Joshi S, Lai S, Braner DA, Tegtmeyer K. Bone marrow aspiration and biopsy. N Engl J Med. 2009; 361(15): 28.

REFERENCES

53. Kaur M, Rana APS, Kapoor S, Puri A. Diagnostic value of bone marrow aspiration and biopsy in routine hematology practice. Journal of clinical and diagnostic research: JCDR. 2014; 8(8): FC13.

54. Deghady AAM, Mansour AR, Elhamed BAAA. The value of cytochemical stains in the diagnosis of acute leukemia. Intern J Reas Health Scien Nur. 2016; 2(5): 1-7.

55. Cheng J, Klairmont MM, Choi JK. Peripheral blood flow cytometry for the diagnosis of pediatric acute leukemia: Highly reliable with rare exceptions. Pediatric blood & cancer. 2019; 66(1): e27453.

56. Mullighan CG. The molecular genetic makeup of acute lymphoblastic leukemia. Hematology. 2012; 2012(1): 389-396.

57. Brown P, Inaba H, Annesley C, Beck J, Colace S, Dallas M, et al. Pediatric Acute Lymphoblastic Leukemia, Version 2.2020, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network. 2020; 18(1): 81-112.

58. Raluca Maniu D, Blag C, Popa G, Bota M, Vlad C, Cainap C, et al. The role of biomarkers and echocardiography in the evaluation of cardiotoxicity risk in children treated for leukemia. Journal of BUON : official journal of the Balkan Union of Oncology. 2018; 23(7): 122-131.

59. Kanda J, Fuji S, Kato S, Takami A, Tanaka J, Miyamura K, et al. Decision analysis for donor selection in stem cell transplantation—HLA-8/8 allelematched unrelated donor vs HLA-1 AG mismatched related donor. Blood Cancer Journal. 2014; 4(12): e263-e263.

60. Phasuk N, Keatkla J, Rattanasiri S, Techasaensiri C, Anurathapan U, Apiwattanakul N. Monitoring of cytomegalovirus infection in non-transplant pediatric acute lymphoblastic leukemia patients during chemotherapy. Medicine (Baltimore). 2019; 98(4): e14256.
61. Moschovi M, Adamaki M, Vlahopoulos SA. Progress in Treatment of Viral Infections in Children with Acute Lymphoblastic Leukemia. Oncology reviews. 2016; 10(1): 300.

62. Burley K, Salem J, Phillips T, Reilly-Stitt C, Marks DI, Tunstall O, et al. Evaluation of coagulopathy before and during induction chemotherapy for acute lymphoblastic leukaemia, including assessment of global clotting tests. Blood Cancer Journal. 2017; 7(6): e574-e574.

63. Silverman LB. Childhood acute lymphoblastic leukemia: Currently applied prognostic factors. Siop education book international society of paediatric oncology 2nd edn. 2010: 18-24.

64. Schrappe M, Hunger SP, Pui C-H, Saha V, Gaynon PS, Baruchel A, et al. Outcomes after induction failure in childhood acute lymphoblastic leukemia. New England Journal of Medicine. 2012; 366(15): 1371-1381.

Board PPTE. Childhood acute lymphoblastic leukemia treatment (PDQ®).
 PDQ Cancer Information Summaries [Internet]: National Cancer Institute (US);
 2019,

66. Teachey DT, Hunger SP. Predicting relapse risk in childhood acute lymphoblastic leukaemia. British Journal of Haematology. 2013; 162(5): 606-620.

67. Schrappe M, Hunger SP, Pui C-H, Saha V, Gaynon PS, Baruchel A, et al. Outcomes after Induction Failure in Childhood Acute Lymphoblastic Leukemia. New England Journal of Medicine. 2012; 366(15): 1371-1381.

68. Pui C-H, Yang JJ, Hunger SP, Pieters R, Schrappe M, Biondi A, et al. Childhood acute lymphoblastic leukemia: progress through collaboration. Journal of Clinical Oncology. 2015; 33(27): 2938.

69. Winick N, Devidas M, Chen S, Maloney K, Larsen E, Mattano L, et al. Impact of Initial CSF Findings on Outcome Among Patients With National Cancer Institute Standard- and High-Risk B-Cell Acute Lymphoblastic

Leukemia: A Report From the Children's Oncology Group. Journal of Clinical Oncology. 2017; 35(22): 2527-2534.

70. Doctors Conter V, Rizzari C, Sala A, Chiesa R, Citterio M. Acute Lymphoblastic Leukemia. 2004.

71. Pui CH, Campana D. New definition of remission in childhood acute lymphoblastic leukemia. Leukemia. 2000; 14(5): 783-785.

72. Smith M, Arthur D, Camitta B, Carroll AJ, Crist W, Gaynon P, et al. Uniform approach to risk classification and treatment assignment for children with acute lymphoblastic leukemia. Journal of Clinical Oncology. 1996; 14(1): 18-24.

73. Schultz KR, Pullen DJ, Sather HN, Shuster JJ, Devidas M, Borowitz MJ, et al. Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children's Cancer Group (CCG). Blood. 2006; 109(3): 926-935.

74. Friedmann AM, Weinstein HJ. The role of prognostic features in the treatment of childhood acute lymphoblastic leukemia. The oncologist. 2000; 5(4): 321-328.

75. Bassan R, Hoelzer D. Modern Therapy of Acute Lymphoblastic Leukemia. Journal of Clinical Oncology. 2011; 29(5): 532-543.

76. Pui CH, Pei D, Campana D, Cheng C, Sandlund JT, Bowman WP, et al. A revised definition for cure of childhood acute lymphoblastic leukemia. Leukemia. 2014; 28(12): 2336-2343.

77. Mitchell C, Hall G, Clarke RT. Acute leukaemia in children: diagnosis and management. Bmj. 2009; 338: b2285.

78. Childhood Acute Lymphoblastic Leukaemia Collaborative Group Beneficial and harmful effects of anthracyclines in the treatment of childhood

acute lymphoblastic leukaemia: a systematic review and meta-analysis. British Journal of Haematology. 2009; 145(3): 376-388.

79. Campana D, Pui C-H. Minimal residual disease–guided therapy in childhood acute lymphoblastic leukemia. Blood. 2017; 129(14): 1913-1918.

80. Stow P, Key L, Chen X, Pan Q, Neale GA, Coustan-Smith E, et al. Clinical significance of low levels of minimal residual disease at the end of remission induction therapy in childhood acute lymphoblastic leukemia. Blood. 2010; 115(23): 4657-4663.

81. Seibel NL, Steinherz PG, Sather HN, Nachman JB, DeLaat C, Ettinger LJ, et al. Early postinduction intensification therapy improves survival for children and adolescents with high-risk acute lymphoblastic leukemia: a report from the Children's Oncology Group. Blood. 2008; 111(5): 2548-2555.

82. Schrappe M, Bleckmann K, Zimmermann M, Biondi A, Möricke A, Locatelli F, et al. Reduced-intensity delayed intensification in standard-risk pediatric acute lymphoblastic leukemia defined by undetectable minimal residual disease: results of an international randomized trial (AIEOP-BFM ALL 2000). Journal of Clinical Oncology. 2018; 36(3): 244-253.

83. Vora A, Goulden N, Wade R, Mitchell C, Hancock J, Hough R, et al. Treatment reduction for children and young adults with low-risk acute lymphoblastic leukaemia defined by minimal residual disease (UKALL 2003): a randomised controlled trial. The Lancet Oncology. 2013; 14(3): 199-209.

84. Schmiegelow K, Nielsen SN, Frandsen TL, Nersting J. Mercaptopurine/Methotrexate Maintenance Therapy of Childhood Acute Lymphoblastic Leukemia: Clinical Facts and Fiction. Journal of Pediatric Hematology/Oncology. 2014; 36(7): 503-517.

85. Bhatia S, Landier W, Shangguan M, Hageman L, Schaible AN, Carter AR, et al. Nonadherence to oral mercaptopurine and risk of relapse in Hispanic and

non-Hispanic white children with acute lymphoblastic leukemia: a report from the children's oncology group. Journal of Clinical Oncology. 2012; 30(17): 2094.
86. Jost F, Zierk J, Le TT, Raupach T, Rauh M, Suttorp M, et al. Model-based simulation of maintenance therapy of childhood acute lymphoblastic leukemia. Frontiers in Physiology. 2020; 11.

87. Alvarnas JC, Brown PA, Aoun P, Ballen KK, Bellam N, Blum W, et al. Acute lymphoblastic leukemia. Journal of the National Comprehensive Cancer Network. 2012; 10(7): 858-914.

88. Richards S, Pui C-H, Gayon P, Group obotCALLC. Systematic review and meta-analysis of randomized trials of central nervous system directed therapy for childhood acute lymphoblastic leukemia. Pediatric blood & cancer. 2013; 60(2): 185-195.

89. Vora A, Andreano A, Pui C-H, Hunger SP, Schrappe M, Moericke A, et al. Influence of Cranial Radiotherapy on Outcome in Children With Acute Lymphoblastic Leukemia Treated With Contemporary Therapy. Journal of Clinical Oncology. 2016; 34(9): 919-926.

90. Buizer AI, de Sonneville LM, van den Heuvel–Eibrink MM, Veerman AJ. Chemotherapy and attentional dysfunction in survivors of childhood acute lymphoblastic leukemia: effect of treatment intensity. Pediatric blood & cancer. 2005; 45(3): 281-290.

91. Gossai NP, Gordon PM. The Role of the Central Nervous System Microenvironment in Pediatric Acute Lymphoblastic Leukemia. Frontiers in Pediatrics. 2017; 5(90).

92. Krull KR, Brinkman TM, Li C, Armstrong GT, Ness KK, Srivastava DK, et al. Neurocognitive outcomes decades after treatment for childhood acute lymphoblastic leukemia: a report from the St Jude lifetime cohort study. Journal of Clinical Oncology. 2013; 31(35): 4407.

93. Urban C, Benesch M, Lackner H, Schwinger W, Kerbl R, Gadner H. The influence of maximum supportive care on dose compliance and survival. Klin Padiatr. 1997; 209(04): 235-242.

94. O'Connor D, Bate J, Wade R, Clack R, Dhir S, Hough R, et al. Infectionrelated mortality in children with acute lymphoblastic leukemia: an analysis of infectious deaths on UKALL2003. Blood. 2014; 124(7): 1056-1061.

95. Inaba H, Pei D, Wolf J, Howard SC, Hayden RT, Go M, et al. Infectionrelated complications during treatment for childhood acute lymphoblastic leukemia. Annals of Oncology. 2017; 28(2): 386-392.

96. Cairo MS, Bishop M. Tumour lysis syndrome: new therapeutic strategies and classification. British Journal of Haematology. 2004; 127(1): 3-11.

97. Coiffier B, Altman A, Pui C-H, Younes A, Cairo MS. Guidelines for the management of pediatric and adult tumor lysis syndrome: an evidence-based review. Journal of Clinical Oncology. 2008; 26(16): 2767-2778.

98. Jones GL, Will A, Jackson GH, Webb NJA, Rule S, Haematology tBCfSi. Guidelines for the management of tumour lysis syndrome in adults and children with haematological malignancies on behalf of the British Committee for Standards in Haematology. British Journal of Haematology. 2015; 169(5): 661-671.

99. Payne JH, Vora AJ. Thrombosis and acute lymphoblastic leukaemia. British Journal of Haematology. 2007; 138(4): 430-445.

100. Hijiya N, Van Der Sluis IM. Asparaginase-associated toxicity in children with acute lymphoblastic leukemia. Leukemia & lymphoma. 2016; 57(4): 748-757.

101. Jaime-Pérez JC, García-Arellano G, Herrera-Garza JL, Marfil-Rivera LJ, Gómez-Almaguer D. Revisiting the complete blood count and clinical findings at diagnosis of childhood acute lymphoblastic leukemia: 10-year experience at a single center. Hematology, transfusion and cell therapy. 2019; 41(1): 57-61.

102. Izak M, Bussel JB. Management of thrombocytopenia. F1000Prime Rep.2014; 6: 45-45.

103. Teuffel O, Stanulla M, Cario G, Ludwig WD, Rottgers S, Schafer BW, et al. Anemia and survival in childhood acute lymphoblastic leukemia. Haematologica. 2008; 93(11): 1652-1657.

104. Bercovitz RS, Josephson CD. Thrombocytopenia and bleeding in pediatric oncology patients. Hematology. 2012; 2012(1): 499-505.

105. Duval M, Klein JP, He W, Cahn J-Y, Cairo M, Camitta BM, et al. Hematopoietic Stem-Cell Transplantation for Acute Leukemia in Relapse or Primary Induction Failure. Journal of Clinical Oncology. 2010; 28(23): 3730-3738.

106. Yaniv I, Krauss AC, Beohou E, Dalissier A, Corbacioglu S, Zecca M, et al. Second Hematopoietic Stem Cell Transplantation for Post-Transplantation Relapsed Acute Leukemia in Children: A Retrospective EBMT-PDWP Study. Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation. 2018; 24(8): 1629-1642.

107. Giebel S, Boumendil A, Labopin M, Seesaghur A, Baron F, Ciceri F, et al. Trends in the use of hematopoietic stem cell transplantation for adults with acute lymphoblastic leukemia in Europe: a report from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation (EBMT). Annals of hematology. 2019; 98(10): 2389-2398.

108. Kontos CK, Scorilas A. Kallikrein-related peptidases (KLKs): a gene family of novel cancer biomarkers. Clinical chemistry and laboratory medicine. 2012; 50(11): 1877-1891.

109. Kraut H, Frey E, Werle E. Der Nachweis eines Kreislaufhormons in der Pankreasdrüse.(IV. Mitteilung über dieses Kreislaufhormon.). Hoppe-Seyler´s Zeitschrift für Physiologische Chemie. 1930; 189(3-4): 97-106.

110. Bhoola K, Figueroa C, Worthy K. Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacological reviews. 1992; 44(1): 1-80.

111. Chung DW, Fujikawa K, McMullen BA, Davie EW. Human plasma prekallikrein, a zymogen to a serine protease that contains four tandem repeats. Biochemistry. 1986; 25(9): 2410-2417.

112. Sotiropoulou G, Pampalakis G, Diamandis EP. Functional roles of human kallikrein-related peptidases. Journal of Biological Chemistry. 2009; 284(48): 32989-32994.

113. Beaubien G, Rosinski-Chupin I, Mattei M, Mbikay M, Chretien M, SeidahN. Gene structure and chromosomal localization of plasma kallikrein.Biochemistry. 1991; 30(6): 1628-1635.

114. Björkqvist J, Jämsä A, Renné T. Plasma kallikrein: the bradykininproducing enzyme. Thrombosis and haemostasis. 2013; 110(09): 399-407.

115. Koumandou VL, Scorilas A. Evolution of the Plasma and Tissue Kallikreins, and Their Alternative Splicing Isoforms. PloS one. 2013; 8(7): e68074.

116. Schmaier AH. Assembly, activation, and physiologic influence of the plasma kallikrein/kinin system. International immunopharmacology. 2008; 8(2): 161-165.

117. Cerf M, Raidoo D, Fink E, Fritz H, Bhoola K. Plasma kallikrein localisation in human blood vessels. Immunopharmacology. 1999; 44(1-2): 75-80.

118. Yousef GM, Luo L-Y, Diamandisiz EP. Chromosome 19q13. 3-q13. 4. Anticancer research. 1999; 19: 2843-2852.

119. Lundwall Å, Band V, Blaber M, Clements JA, Courty Y, Diamandis EP, et al. A comprehensive nomenclature for serine proteases with homology to tissue kallikreins. Biological chemistry. 2006; 387(6): 637-641.

120. Diamandis EP, Yousef GM, Clements J, Ashworth LK, Yoshida S, Egelrud T, et al. New nomenclature for the human tissue kallikrein gene family. Clinical chemistry. 2000; 46(11): 1855-1858.

121. Yousef GM, Diamandis M, Jung K, Diamandis EP. Molecular cloning of a novel human acid phosphatase gene (ACPT) that is highly expressed in the testis. Genomics. 2001; 74(3): 385-395.

122. Foussias G, Yousef GM, Diamandis EP. Identification and molecular characterization of a novel member of the siglec family (SIGLEC9). Genomics. 2000; 67(2): 171-178.

123. Borgoño CA, Diamandis EP. The emerging roles of human tissue kallikreins in cancer. Nature Reviews Cancer. 2004; 4(11): 876-890.

124. Riegman P, Vlietstra R, Van der Korput J, Romijn J, Trapman J. Characterization of the prostate-specific antigen gene: a novel human kallikreinlike gene. Biochemical and biophysical research communications. 1989; 159(1): 95-102.

125. Diamandis EP, Yousef GM, Luo L-Y, Magklara A, Obiezu CV. The new human kallikrein gene family: implications in carcinogenesis. Trends in Endocrinology & Metabolism. 2000; 11(2): 54-60.

126. Lawrence MG, Lai J, Clements JA. Kallikreins on steroids: structure, function, and hormonal regulation of prostate-specific antigen and the extended kallikrein locus. Endocrine reviews. 2010; 31(4): 407-446.

127. Shaw JL, Diamandis EP. Regulation of human tissue kallikrein-related peptidase expression by steroid hormones in 32 cell lines. Biological Chemistry. 2008; 389(11): 1409-1419.

128. Pasic MD, Olkhov E, Bapat B, Yousef GM. Epigenetic regulation of kallikrein-related peptidases: there is a whole new world out there. Biological chemistry. 2012; 393(5): 319-330.

129. Samaan S, Lichner Z, Ding Q, Saleh C, Samuel J, Streutker C, et al. Kallikreins are involved in an miRNA network that contributes to prostate cancer progression. Biological chemistry. 2014; 395(9): 991-1001.

130. Olkhov-Mitsel E, Van der Kwast T, Kron K, Ozcelik H, Briollais L, Massaey C, et al. Quantitative DNA methylation analysis of genes coding for kallikrein-related peptidases 6 and 10 as biomarkers for prostate cancer. Epigenetics. 2012; 7(9): 1037-1045.

131. Lai J, Kedda M-A, Hinze K, Smith RL, Yaxley J, Spurdle AB, et al. PSA/KLK3 AREI promoter polymorphism alters androgen receptor binding and is associated with prostate cancer susceptibility. Carcinogenesis. 2007; 28(5): 1032-1039.

132. Rawlings ND, Barrett AJ. Introduction: metallopeptidases and their clans. Handbook of proteolytic enzymes: Elsevier; 2004. p. 231-267, 231-267.

133. Pavlopoulou A, Pampalakis G, Michalopoulos I, Sotiropoulou G. Evolutionary history of tissue kallikreins. PloS one. 2010; 5(11): e13781.

134. Yousef GM, Diamandis EP. The new human tissue kallikrein gene family: structure, function, and association to disease. Endocrine reviews. 2001; 22(2): 184-204.

135. Shaw JL, Diamandis EP. Distribution of 15 human kallikreins in tissues and biological fluids. Clinical chemistry. 2007; 53(8): 1423-1432.

136. Diamandis EP, Yousef GM. Human tissue kallikreins: a family of new cancer biomarkers. Clinical chemistry. 2002; 48(8): 1198-1205.

137. Yousef GM, Elliott MB, Kopolovic AD, Serry E, Diamandis EP. Sequence and evolutionary analysis of the human trypsin subfamily of serine peptidases.Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics. 2004; 1698(1): 77-86.

138. Debela M, Beaufort N, Magdolen V, Schechter NM, Craik CS, Schmitt M, et al. Structures and specificity of the human kallikrein-related peptidases KLK
4, 5, 6, and 7. Biological chemistry. 2008; 389(6): 623-632.

139. Yoon H, Blaber SI, Debela M, Goettig P, Scarisbrick IA, Blaber M. A completed KLK activome profile: investigation of activation profiles of KLK9, 10, and 15. Biological chemistry. 2009; 390(4): 373-377.

140. Debela M, Magdolen V, Schechter N, Valachova M, Lottspeich F, Craik CS, et al. Specificity profiling of seven human tissue kallikreins reveals individual subsite preferences. Journal of Biological Chemistry. 2006; 281(35): 25678-25688.

141. Di Cera E. Serine proteases. IUBMB life. 2009; 61(5): 510-515.

142. Debela M, Magdolen V, Bode W, Brandstetter H, Goettig P. Structural basis for the Zn2+ inhibition of the zymogen-like kallikrein-related peptidase 10.Biological chemistry. 2016; 397(12): 1251-1264.

143. Schmidt AE, Ogawa T, Gailani D, Bajaj SP. Structural Role of Gly193 in Serine Proteases Investigations of a G555E (GLY193 in Chymotrypsin) Mutant of Blood Coagulation Factor XI. Journal of Biological Chemistry. 2004; 279(28): 29485-29492.

144. Goettig P, Magdolen V, Brandstetter H. Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs). Biochimie. 2010; 92(11): 1546-1567.

145. Clements JA, Willemsen NM, Myers SA, Dong Y. The tissue kallikrein family of serine proteases: functional roles in human disease and potential as clinical biomarkers. Critical reviews in clinical laboratory sciences. 2004; 41(3): 265-312.

146. Goettig P, Brandstetter H, Magdolen V. Surface loops of trypsin-like serine proteases as determinants of function. Biochimie. 2019; 166: 52-76.

147. Moreau ME, Garbacki N, Molinaro G, Brown NJ, Marceau F, Adam A. The kallikrein-kinin system: current and future pharmacological targets. Journal of pharmacological sciences. 2005; 99(1): 6-38.

148. Kashuba E, Bailey J, Allsup D, Cawkwell L. The kinin–kallikrein system: physiological roles, pathophysiology and its relationship to cancer biomarkers. Biomarkers. 2013; 18(4): 279-296.

149. Dominek P, Campagnolo P, H-zadeh M, Kränkel N, Chilosi M, Sharman J, et al. Role of human tissue kallikrein in gastrointestinal stromal tumour invasion. British journal of cancer. 2010; 103(9): 1422-1431.

150. Yao Y-y, Fu C, Ma G-s, Feng Y, Shen C-x, Wu G-q, et al. Tissue kallikrein is related to the severity of coronary artery disease. Clinica chimica acta. 2013; 423: 90-98.

151. Veveris-Lowe TL, Kruger SJ, Walsh T, Gardiner RA, Clements JA, editors. Seminal fluid characterization for male fertility and prostate cancer: kallikrein-related serine proteases and whole proteome approaches. Seminars in thrombosis and hemostasis; 2007: Copyright© 2007 by Thieme Publishers, Inc., 333 Seventh Avenue, New York, NY

152. De Lamirande E, editor Semenogelin, the main protein of the human semen coagulum, regulates sperm function. Seminars in thrombosis and hemostasis; 2007: New York: Stratton Intercontinental Medical Book Corporation, c1974-.

153. Sävblom C. The Kallikrein-Related Peptidases hK2 and PSA with Emphasis on Genetic Variation, Secretion, and Sperm Motility: Lund University; 2008.

154. Stefanini ACB, da Cunha BR, Henrique T, Tajara EH. Involvement of kallikrein-related peptidases in normal and pathologic processes. Disease markers. 2015; 2015.

155. De Angelis G, Rittenhouse HG, Mikolajczyk SD, Shamel LB, Semjonow A. Twenty years of PSA: from prostate antigen to tumor marker. Reviews in urology. 2007; 9(3): 113.

156. Stege R, Grande M, Carlström K, Tribukait B, Pousette Å. Prognostic significance of tissue prostate-specific antigen in endocrine-treated prostate carcinomas. Clinical cancer research. 2000; 6(1): 160-165.

157. Fan J, Tea M-KM, Yang C, Ma L, Meng QH, Hu TY, et al. Profiling of cross-functional peptidases regulated circulating peptides in BRCA1 mutant breast cancer. Journal of proteome research. 2016; 15(5): 1534-1545.

158. Mashkoor FC, Al-Asadi JN, Al-Naama LM. Serum level of prostatespecific antigen (PSA) in women with breast cancer. Cancer epidemiology. 2013; 37(5): 613-618.

159. Ryu O, Hu JCC, Yamakoshi Y, Villemain JL, Cao X, Zhang C, et al. Porcine kallikrein 4 activation, glycosylation, activity, and expression in prokaryotic and eukaryotic hosts. European journal of oral sciences. 2002; 110(5): 358-365.

160. Yamakoshi Y, Hu JCC, Fukae M, Yamakoshi F, Simmer JP. How do enamelysin and kallikrein 4 process the 32 kDa enamelin? European journal of oral sciences. 2006; 114: 45-51.

161. Gong W, Liu Y, Seidl C, Dreyer T, Drecoll E, Kotzsch M, et al. Characterization of kallikrein-related peptidase 4 (KLK4) mRNA expression in tumor tissue of advanced high-grade serous ovarian cancer patients. PloS one. 2019; 14(2): e0212968.

162. Riley BT, Hoke DE, McGowan S, Buckle AM. Crystal structure of the inhibitor-free form of the serine protease kallikrein-4. Acta Crystallographica Section F: Structural Biology Communications. 2019; 75(8).

163. Kontos CK, Chantzis D, Papadopoulos IN, Scorilas A. Kallikrein-related peptidase 4 (KLK4) mRNA predicts short-term relapse in colorectal adenocarcinoma patients. Cancer letters. 2013; 330(1): 106-112.

164. Liddle J, Beneton V, Benson M, Bingham R, Bouillot A, Boullay A-B, et al. A potent and selective Kallikrein-5 inhibitor delivers high pharmacological activity in Netherton Syndrome patient skin. Journal of Investigative Dermatology. 2021.

165. Borgoño CA, Michael IP, Komatsu N, Jayakumar A, Kapadia R, Clayman GL, et al. A potential role for multiple tissue kallikrein serine proteases in epidermal desquamation. Journal of Biological Chemistry. 2007; 282(6): 3640-3652.

166. Kishibe M. Physiological and pathological roles of kallikrein-related peptidases in the epidermis. Journal of Dermatological Science. 2019; 95(2): 50-55.

167. Deraison C, Bonnart C, Lopez F, Besson C, Robinson R, Jayakumar A, et al. LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pH-dependent interaction. Molecular biology of the cell. 2007; 18(9): 3607-3619.

168. Yousef GM, Diamandis EP. KLK5 (Kallikrein-related peptidase 5). Atlas of Genetics and Cytogenetics in Oncology and Haematology. 2009.

169. Avgeris M, Papachristopoulou G, Polychronis A, Scorilas A. Downregulation of kallikrein-related peptidase 5 (KLK5) expression in breast cancer patients: a biomarker for the differential diagnosis of breast lesions. Clinical proteomics. 2011; 8(1): 5.

170. Dong Y, Kaushal A, Brattsand M, Nicklin J, Clements JA. Differential splicing of KLK5 and KLK7 in epithelial ovarian cancer produces novel variants with potential as cancer biomarkers. Clinical Cancer Research. 2003; 9(5): 1710-1720.

171. Korbakis D, Gregorakis AK, Scorilas A. Quantitative analysis of human kallikrein 5 (KLK5) expression in prostate needle biopsies: an independent cancer biomarker. Clinical chemistry. 2009; 55(5): 904-913.

172. Chang JS, Kim N, Kim J-Y, Do S-I, Cho Y, Kim H-S, et al. Kallikrein 5 overexpression is associated with poor prognosis in uterine cervical cancer. Journal of Gynecologic Oncology. 2019; 31.

173. Scarisbrick IA, Blaber S, Tingling J, Rodriguez M, Blaber M, Christophi G. Potential scope of action of tissue kallikreins in CNS immune-mediated disease. Journal of neuroimmunology. 2006; 178(1-2): 167-176.

174. Haritos C, Michaelidou K, Mavridis K, Missitzis I, Ardavanis A, Griniatsos J, et al. Kallikrein-related peptidase 6 (KLK6) expression differentiates tumor subtypes and predicts clinical outcome in breast cancer patients. Clinical and experimental medicine. 2018; 18(2): 203-213.

175. Christodoulou S, Alexopoulou DK, Kontos CK, Scorilas A, Papadopoulos IN. Kallikrein-related peptidase-6 (KLK6) mRNA expression is an independent prognostic tissue biomarker of poor disease-free and overall survival in colorectal adenocarcinoma. Tumor Biology. 2014; 35(5): 4673-4685.

176. Lei S, Zhang Q, Yin F, He X, Wang J. Expression and clinical significance of KLK5-8 in endometrial cancer. American Journal of Translational Research. 2019; 11(7): 4180.

177. Adamopoulos PG, Kontos CK, Scorilas A. Molecular cloning of novel transcripts of human kallikrein-related peptidases 5, 6, 7, 8 and 9 (KLK5–KLK9), using next-generation sequencing. Scientific reports. 2017; 7(1): 1-14.

178. Kuzmanov U, Jiang N, Smith CR, Soosaipillai A, Diamandis EP. Differential N-glycosylation of kallikrein 6 derived from ovarian cancer cells or the central nervous system. Molecular & Cellular Proteomics. 2009; 8(4): 791-798.

179. Diamandis EP, Yousef GM, Soosaipillai AR, Bunting P. Human kallikrein6 (zyme/protease M/neurosin): a new serum biomarker of ovarian carcinoma.Clinical biochemistry. 2000; 33(7): 579-583.

180. Torres A, Pac-Sosi ska M, Wiktor K, Paszkowski T, Maciejewski R, Torres K. CD44, TGM2 and EpCAM as novel plasma markers in endometrial cancer diagnosis. BMC cancer. 2019; 19(1): 401.

181. Santin AD, Diamandis EP, Bellone S, Soosaipillai A, Cane S, Palmieri M, et al. Human kallikrein 6: a new potential serum biomarker for uterine serous papillary cancer. Clinical cancer research. 2005; 11(9): 3320-3325.

182. Chularojanamontri L, Charoenpipatsin N, Silpa-Archa N, Wongpraparut C, Thongboonkerd V. Proteomics in psoriasis. International Journal of Molecular Sciences. 2019; 20(5): 1141.

183. Patra K, Soosaipillai A, Sando SB, Lauridsen C, Berge G, Møller I, et al. Assessment of kallikrein 6 as a cross-sectional and longitudinal biomarker for Alzheimer's disease. Alzheimer's research & therapy. 2018; 10(1): 9.

184. Yoon H, Scarisbrick IA. Kallikrein-related peptidase 6 exacerbates disease in an autoimmune model of multiple sclerosis. Biological chemistry. 2016; 397(12): 1277-1286.

185. Petraki CD, Karavana VN, Luo L-Y, Diamandis EP. Human kallikrein 10 expression in normal tissues by immunohistochemistry. Journal of Histochemistry & Cytochemistry. 2002; 50(9): 1247-1261.

186. Luo L-Y, Grass L, Diamandis EP. Steroid hormone regulation of the human kallikrein 10 (KLK10) gene in cancer cell lines and functional characterization of the KLK10 gene promoter. Clinica chimica acta. 2003; 337(1-2): 115-126.

187. Paliouras M, Diamandis EP. Androgens act synergistically to enhance estrogen-induced upregulation of human tissue kallikreins 10, 11, and 14 in breast

cancer cells via a membrane bound androgen receptor. Molecular oncology. 2008; 1(4): 413-424.

188. Roman-Gomez J, Jimenez-Velasco A, Agirre X, Castillejo J, Barrios M, Andreu E, et al. The normal epithelial cell-specific 1 (NES1) gene, a candidate tumor suppressor gene on chromosome 19q13. 3–4, is downregulated by hypermethylation in acute lymphoblastic leukemia. Leukemia. 2004; 18(2): 362-365.

189. Dhar S, Bhargava R, Yunes M, Li B, Goyal J, Naber SP, et al. Analysis of normal epithelial cell specific-1 (NES1)/kallikrein 10 mRNA expression by in situ hybridization, a novel marker for breast cancer. Clinical cancer research. 2001; 7(11): 3393-3398.

190. Luo L, Rajpert-De Meyts E, Jung K, Diamandis E. Expression of the normal epithelial cell-specific 1 (NES1; KLK10) candidate tumour suppressor gene in normal and malignant testicular tissue. British journal of cancer. 2001; 85(2): 220-224.

191. Schmitt M, Magdolen V, Yang F, Kiechle M, Bayani J, Yousef GM, et al. Emerging clinical importance of the cancer biomarkers kallikrein-related peptidases (KLK) in female and male reproductive organ malignancies. Radiology and oncology. 2013; 47(4): 319-329.

192. Dorn J, Bayani J, Yousef GM, Yang F, Magdolen V, Kiechle M, et al. Clinical utility of kallikrein-related peptidases (KLK) in urogenital malignancies. Thromb Haemost. 2013; 110(3): 408-422.

193. Alexopoulou DK, Papadopoulos IN, Scorilas A. Clinical significance of kallikrein-related peptidase (KLK10) mRNA expression in colorectal cancer. Clinical biochemistry. 2013; 46(15): 1453-1461.

194. Yousef GM, Borgono CA, Popalis C, Yacoub GM, Polymeris M-E, Soosaipillai A, et al. In-silico analysis of kallikrein gene expression in pancreatic and colon cancers. Anticancer research. 2004; 24(1): 43-52.

195. Luo L-Y, Katsaros D, Scorilas A, Fracchioli S, Bellino R, van Gramberen M, et al. The serum concentration of human kallikrein 10 represents a novel biomarker for ovarian cancer diagnosis and prognosis. Cancer research. 2003; 63(4): 807-811.

196. Borgono CA, Grass L, Soosaipillai A, Yousef GM, Petraki CD, Howarth DH, et al. Human kallikrein 14: a new potential biomarker for ovarian and breast cancer. Cancer research. 2003; 63(24): 9032-9041.

197. Yousef GM, Magklara A, Chang A, Jung K, Katsaros D, Diamandis EP. Cloning of a new member of the human kallikrein gene family, KLK14, which is down-regulated in different malignancies. Cancer research. 2001; 61(8): 3425-3431.

198. Hooper JD, Bui LT, Rae FK, Harvey TJ, Myers SA, Ashworth LK, et al. Identification and characterization of KLK14, a novel kallikrein serine protease gene located on human chromosome 19q13. 4 and expressed in prostate and skeletal muscle. Genomics. 2001; 73(1): 117-122.

199. Paliouras M, Diamandis EP. Coordinated steroid hormone-dependent and independent expression of multiple kallikreins in breast cancer cell lines. Breast Cancer Research and Treatment. 2007; 102(1): 7-18.

200. Yousef GM, Fracchioli S, Scorilas A, Borgoño CA, Iskander L, Puopolo M, et al. Steroid hormone regulation and prognostic value of the human kallikrein gene 14 in ovarian cancer. Am J Clin Pathol. 2003; 119(3): 346-355.

201. Borgoño CA, Michael IP, Shaw JL, Luo L-Y, Ghosh MC, Soosaipillai A, et al. Expression and functional characterization of the cancer-related serine protease, human tissue kallikrein 14. Journal of Biological Chemistry. 2007; 282(4): 2405-2422.

202. Emami N, Diamandis EP. Human kallikrein-related peptidase 14 (KLK14) is a new activator component of the KLK proteolytic cascade possible function

in seminal plasma and skin. Journal of Biological Chemistry. 2008; 283(6): 3031-3041.

203. Emami N, Deperthes D, Malm J, Diamandis EP. Major role of human KLK14 in seminal clot liquefaction. Journal of Biological Chemistry. 2008; 283(28): 19561-19569.

204. Anamthathmakula P, Winuthayanon W. Mechanism of semen liquefaction and its potential for a novel non-hormonal contraception[†]. Biology of Reproduction. 2020; 103(2): 411-426.

205. Devetzi M, Trangas T, Scorilas A, Xynopoulos D, Talieri M. Parallel overexpression and clinical significance of kallikrein-related peptidases 7 and 14 (KLK7 & KLK14) in colon cancer. Thrombosis and haemostasis. 2013; 109(04): 716-725.

206. UKALL2019 Interim Guidelines v1.1 25-Apr-2019: University Hospital Southampton NHS Foundation Trust; 2019 [Available from: /Media/SUHTExtranet/Services/PaediatricOncology/Leukaemias/UKALL-2019-interim-guidelines.pdf.

207. Pandit P, Cooper-White J, Punyadeera C. High-yield RNA-extraction method for saliva. Clinical chemistry. 2013; 59(7): 1118-1122.

208. Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, et al. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Molecular Biology. 2006; 7(1): 3.

209. Wang L, Nie J, Sicotte H, Li Y, Eckel-Passow JE, Dasari S, et al. Measure transcript integrity using RNA-seq data. BMC Bioinformatics. 2016; 17(1): 58.

210. Kim JJ, Kim J-T, Yoon HR, Kang MA, Kim JH, Lee Y-H, et al. Upregulation and secretion of kallikrein-related peptidase 6 (KLK6) in gastric cancer. Tumor Biology. 2012; 33(3): 731-738.

211. Papachristopoulou G, Talieri M, Scorilas A. Significant alterations in the expression pattern of kallikrein-related peptidase genes KLK4, KLK5 and

KLK14 after treatment of breast cancer cells with the chemotherapeutic agents epirubicin, docetaxel and methotrexate. Tumor Biology. 2013; 34(1): 369-378.

212. Konstantoudakis G, Florou D, Mavridis K, Papadopoulos IN, Scorilas A. Kallikrein-related peptidase 13 (KLK13) gene expressional status contributes significantly in the prognosis of primary gastric carcinomas. Clinical biochemistry. 2010; 43(15): 1205-1211.

213. Shorter K, Farjo NP, Picksley SM, Randall VA. Human hair follicles contain two forms of ATP-sensitive potassium channels, only one of which is sensitive to minoxidil. The FASEB Journal. 2008; 22(6): 1725-1736.

214. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C T method. Nature protocols. 2008; 3(6): 1101.

215. Lee PY, Costumbrado J, Hsu C-Y, Kim YH. Agarose gel electrophoresis for the separation of DNA fragments. JoVE (Journal of Visualized Experiments). 2012; (62): e3923.

216. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual: Cold spring harbor laboratory press; 1989.

217. Hanley JA, McNeil BJ. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology. 1983; 148(3): 839-843.

218. Goossens N, Nakagawa S, Sun X, Hoshida Y. Cancer biomarker discovery and validation. Translational cancer research. 2015; 4(3): 256.

219. Tailor PD, Kodeboyina SK, Bai S, Patel N, Sharma S, Ratnani A, et al. Diagnostic and prognostic biomarker potential of kallikrein family genes in different cancer types. Oncotarget. 2018; 9(25): 17876.

220. Thorek DL, Evans MJ, Carlsson SV, Ulmert D, Lilja H. Prostate specific kallikrein-related peptidases and their relation to prostate cancer biology and detection; established relevance and emerging roles. Thrombosis and haemostasis. 2013; 110(3): 484.

221. WATROWSKI R, Castillo-Tong DC, Obermayr E, Zeillinger R. Gene Expression of Kallikreins in Breast Cancer Cell Lines. Anticancer Research. 2020; 40(5): 2487-2495.

222. Figueroa CD, Molina L, Bhoola KD, Ehrenfeld P. Overview of tissue kallikrein and kallikrein-related peptidases in breast cancer. Biological Chemistry. 2018; 399(9): 937-957.

223. Geng X, Liu Y, Diersch S, Kotzsch M, Grill S, Weichert W, et al. Clinical relevance of kallikrein-related peptidase 9, 10, 11, and 15 mRNA expression in advanced high-grade serous ovarian cancer. PloS one. 2017; 12(11): e0186847.

224. Geng X, Liu Y, Dreyer T, Bronger H, Drecoll E, Magdolen V, et al. Elevated tumor tissue protein expression levels of kallikrein-related peptidases KLK10 and KLK11 are associated with a better prognosis in advanced high-grade serous ovarian cancer patients. American journal of cancer research. 2018; 8(9): 1856.

225. Nathalie HVh, Chris P, Serge G, Catherine C, Benjamin B, Claire B, et al. High kallikrein related peptidase 6 in non small cell lung cancer cells: an indicator of tumour proliferation and poor prognosis. Journal of cellular and molecular medicine. 2009; 13(9b): 4014-4022.

226. Liu X, Xiong H, Li J, He Y, Yuan X. Correlation of hK6 expression with tumor recurrence and prognosis in advanced gastric cancer. Diagnostic Pathology. 2013; 8(1): 62.

227. Paliouras M, Borgono C, Diamandis EP. Human tissue kallikreins: the cancer biomarker family. Cancer letters. 2007; 249(1): 61-79.

228. Borgono CA, Michael IP, Diamandis EP. Human tissue kallikreins: physiologic roles and applications in cancer. Molecular cancer research. 2004; 2(5): 257-280.

229. Kashuba E, Eagle GL, Bailey J, Evans P, Welham KJ, Allsup D, et al.
Proteomic analysis of B-cell receptor signaling in chronic lymphocytic leukaemia reveals a possible role for kininogen. Journal of proteomics. 2013; 91: 478-485.
230. Adamopoulos PG, Kontos CK, Papageorgiou SG, Pappa V, Scorilas A.
KLKB1 mRNA overexpression: a novel molecular biomarker for the diagnosis of chronic lymphocytic leukemia. Clinical Biochemistry. 2015; 48(13-14): 849-854.

231. Kontos CK, Adamopoulos PG, Papageorgiou SG, Pappa V, Scorilas A. mRNA overexpression of kallikrein-related peptidase 14 (KLK14) is an independent predictor of poor overall survival in chronic lymphocytic leukemia patients. Clinical Chemistry and Laboratory Medicine (CCLM). 2016; 54(2): 315-324.

232. Smith L, Glaser AW, Kinsey SE, Greenwood DC, Chilton L, Moorman AV, et al. Long term survival after childhood acute lymphoblastic leukaemia: population based trends in cure and relapse by clinical characteristics. British journal of haematology. 2018; 182(6): 851-858.

233. Pampalakis G, Prosnikli E, Agalioti T, Vlahou A, Zoumpourlis V, Sotiropoulou G. A tumor-protective role for human kallikrein-related peptidase 6 in breast cancer mediated by inhibition of epithelial-to-mesenchymal transition. Cancer research. 2009; 69(9): 3779-3787.

234. Michael IP, Pampalakis G, Mikolajczyk SD, Malm J, Sotiropoulou G, Diamandis EP. Human tissue kallikrein 5 is a member of a proteolytic cascade pathway involved in seminal clot liquefaction and potentially in prostate cancer progression. Journal of Biological Chemistry. 2006; 281(18): 12743-12750.

235. Bayani J, Diamandis EP. The physiology and pathobiology of human kallikrein-related peptidase 6 (KLK6). Clinical Chemistry and Laboratory Medicine (CCLM). 2012; 50(2): 211-233.

236. Nagahara H, Mimori K, Utsunomiya T, Barnard GF, Ohira M, Hirakawa K, et al. Clinicopathologic and biological significance of kallikrein 6 overexpression in human gastric cancer. Clinical cancer research. 2005; 11(19): 6800-6806.

237. Seiz L, Dorn J, Kotzsch M, Walch A, Grebenchtchikov NI, Gkazepis A, et al. Stromal cell-associated expression of kallikrein-related peptidase 6 (KLK6) indicates poor prognosis of ovarian cancer patients. Biological chemistry. 2012; 393(5): 391-401.

238. Loessner D, Quent VMC, Kraemer J, Weber EC, Hutmacher DW, Magdolen V, et al. Combined expression of KLK4, KLK5, KLK6, and KLK7 by ovarian cancer cells leads to decreased adhesion and paclitaxel-induced chemoresistance. Gynecologic Oncology. 2012; 127(3): 569-578.

239. Ogawa K, Utsunomiya T, Mimori K, Tanaka F, Inoue H, Nagahara H, et al. Clinical significance of human kallikrein gene 6 messenger RNA expression in colorectal cancer. Clinical cancer research. 2005; 11(8): 2889-2893.

240. Tieng FYF, Abu N, Sukor S, Mohd Azman ZA, Mahamad Nadzir N, Lee L-H, et al. L1CAM, CA9, KLK6, HPN, and ALDH1A1 as Potential Serum Markers in Primary and Metastatic Colorectal Cancer Screening. Diagnostics. 2020; 10(7): 444.

241. Yoon H, Radulovic M, Wu J, Blaber SI, Blaber M, Fehlings MG, et al. Kallikrein 6 signals through PAR 1 and PAR 2 to promote neuron injury and exacerbate glutamate neurotoxicity. Journal of neurochemistry. 2013; 127(2): 283-298.

242. Scarisbrick IA, Epstein B, Cloud BA, Yoon H, Wu J, Renner DN, et al. Functional role of kallikrein 6 in regulating immune cell survival. PloS one. 2011; 6(3): e18376.

243. Gieseler F, Ungefroren H, Settmacher U, Hollenberg MD, Kaufmann R. Proteinase-activated receptors (PARs)–focus on receptor-receptor-interactions

and their physiological and pathophysiological impact. Cell Communication and Signaling. 2013; 11(1): 1-26.

244. Gao L, Smith Jr RS, Chen L-M, Chai KX, Chao L, Chao J. Tissue kallikrein promotes prostate cancer cell migration and invasion via a protease-activated receptor-1-dependent signaling pathway. 2010.

245. Liu X, Yu J, Song S, Yue X, Li Q. Protease-activated receptor-1 (PAR-1): a promising molecular target for cancer. Oncotarget. 2017; 8(63): 107334.

246. Wojtukiewicz MZ, Hempel D, Sierko E, Tucker SC, Honn KV. Endothelial protein C receptor (EPCR), protease activated receptor-1 (PAR-1) and their interplay in cancer growth and metastatic dissemination. Cancers. 2019; 11(1): 51.

247. de SB Veiga C, Carneiro-Lobo TC, Coelho CJ, Carvalho SM, Maia RC, Vasconcelos FC, et al. Increased expression of protease-activated receptor 1 (PAR-1) in human leukemias. Blood Cells, Molecules, and Diseases. 2011; 46(3): 230-234.

248. Aref S, El Naga A, Zaki H, Azmy E. Prognostic relevance of proteaseactivated receptor-1 (PAR-1) expression in acute leukemia patients. Int J Cancer Res. 2015; 49: 1648-1654.

249. Hagag AA, Nosair NA, Ghaith FM, Elshenawy EH. Prognostic value of protease activated receptor-1 in children with acute lymphoblastic leukemia. Mediterranean journal of hematology and infectious diseases. 2014; 6(1).

250. Goyama S, Shrestha M, Schibler J, Rosenfeldt L, Miller W, O'Brien E, et al. Protease-activated receptor-1 inhibits proliferation but enhances leukemia stem cell activity in acute myeloid leukemia. Oncogene. 2017; 36(18): 2589-2598.

251. Oikonomopoulou K, Diamandis EP, Hollenberg MD. Kallikrein-related peptidases: proteolysis and signaling in cancer, the new frontier. 2010.

252. Komatsu N, Saijoh K, Otsuki N, Kishi T, Micheal IP, Obiezu CV, et al. Proteolytic processing of human growth hormone by multiple tissue kallikreins and regulation by the serine protease inhibitor Kazal-Type5 (SPINK5) protein. Clinica chimica acta. 2007; 377(1-2): 228-236.

253. Liu X-L, Wazer DE, Watanabe K, Band V. Identification of a novel serine protease-like gene, the expression of which is down-regulated during breast cancer progression. Cancer research. 1996; 56(14): 3371-3379.

254. Li B, Goyal J, Dhar S, Dimri G, Evron E, Sukumar S, et al. CpG methylation as a basis for breast tumor-specific loss of NES1/kallikrein 10 expression. Cancer research. 2001; 61(21): 8014-8021.

255. Pampalakis G, Diamandis EP, Sotiropoulou G. The epigenetic basis for the aberrant expression of kallikreins in human cancers. Biological chemistry. 2006; 387(6): 795-799.

256. Kontos CK, Mavridis K, Talieri M, Scorilas A. Kallikrein-related peptidases (KLKs) in gastrointestinal cancer: mechanistic and clinical aspects. Thrombosis and haemostasis. 2013; 110(09): 450-457.

257. Sidiropoulos M, Pampalakis G, Sotiropoulou G, Katsaros D, Diamandis EP. Downregulation of human kallikrein 10 (KLK10/NES1) by CpG island hypermethylation in breast, ovarian and prostate cancers. Tumor Biology. 2005; 26(6): 324-336.

258. Kioulafa M, Kaklamanis L, Stathopoulos E, Mavroudis D, Georgoulias V, Lianidou E. Kallikrein 10 (KLK10) methylation as a novel prognostic biomarker in early breast cancer. Annals of oncology. 2009; 20(6): 1020-1025.

259. Luo L-Y, Katsaros D, Scorilas A, Fracchioli S, Piccinno R, de la Longrais IAR, et al. Prognostic value of human kallikrein 10 expression in epithelial ovarian carcinoma. Clinical cancer research. 2001; 7(8): 2372-2379.

260. Shvartsman HS, Lu KH, Lee J, Lillie J, Deavers MT, Clifford S, et al. Overexpression of kallikrein 10 in epithelial ovarian carcinomas. Gynecologic oncology. 2003; 90(1): 44-50.

261. Dong Y, Loessner D, Irving-Rodgers H, Obermair A, Nicklin JL, Clements JA. Metastasis of ovarian cancer is mediated by kallikrein related peptidases. Clinical & experimental metastasis. 2014; 31(1): 135-147.

262. Talieri M, Alexopoulou DK, Scorilas A, Kypraios D, Arnogiannaki N, Devetzi M, et al. Expression analysis and clinical evaluation of kallikrein-related peptidase 10 (KLK10) in colorectal cancer. Tumor Biology. 2011; 32(4): 737-744.

263. Iacobuzio-Donahue CA, Ashfaq R, Maitra A, Adsay NV, Shen-Ong GL, Berg K, et al. Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies. Cancer research. 2003; 63(24): 8614-8622.

264. Petraki C, Youssef YM, Dubinski W, Lichner Z, Scorilas A, Pasic MD, et al. Evaluation and prognostic significance of human tissue kallikrein-related peptidase 10 (KLK10) in colorectal cancer. Tumor Biology. 2012; 33(4): 1209-1214.

265. Shimura T, Ebi M, Yamada T, Yamada T, Katano T, Nojiri Y, et al. Urinary kallikrein 10 predicts the incurability of gastric cancer. Oncotarget. 2017; 8(17): 29247.

266. Jiao X, Lu H-J, Zhai M-M, Tan Z-J, Zhi H-N, Liu X-M, et al.
Overexpression of kallikrein gene 10 is a biomarker for predicting poor prognosis in gastric cancer. World Journal of Gastroenterology: WJG. 2013; 19(48): 9425.
267. Sturgeon CM, Duffy MJ, Stenman U-Hk, Lilja H, Brünner N, Chan DW, et al. National Academy of Clinical Biochemistry Laboratory Medicine Practice

Guidelines for Use of Tumor Markers in Testicular, Prostate, Colorectal, Breast, and Ovarian Cancers. Clinical chemistry. 2008; 54(12): e11-e79.

268. Leung F, Diamandis EP, Kulasingam V. Chapter Two - Ovarian Cancer Biomarkers: Current State and Future Implications from High-Throughput Technologies. In: Makowski GS, editor. Advances in Clinical Chemistry. 66: Elsevier; 2014. p. 25-77, 25-77.

269. Yousef G, Borgono C, Scorilas A, Ponzone R, Biglia N, Iskander L, et al. Quantitative analysis of human kallikrein gene 14 expression in breast tumours indicates association with poor prognosis. British journal of cancer. 2002; 87(11): 1287-1293.

270. Papachristopoulou G, Avgeris M, Charlaftis A, Scorilas A. Quantitative expression analysis and study of the novel human kallikrein-related peptidase 14 gene (KLK14) in malignant and benign breast tissues. Thrombosis and haemostasis. 2011; 105(01): 131-137.

271. Luos LY, Yousef G, Diamandis EP. Human tissue kallikreins and testicular cancer. Apmis. 2003; 111(1): 225-233.

272. Kryza T, Bock N, Lovell S, Rockstroh A, Lehman ML, Lesner A, et al. The molecular function of kallikrein related peptidase 14 demonstrates a key modulatory role in advanced prostate cancer. Molecular oncology. 2020; 14(1): 105-128.

273. Lose F, Lawrence MG, Srinivasan S, O'Mara T, Marquart L, Chambers S, et al. The kallikrein 14 gene is down-regulated by androgen receptor signalling and harbours genetic variation that is associated with prostate tumour aggressiveness. Biological chemistry. 2012; 393(5): 403-412.

274. Rabien A, Fritzsche F, Jung M, Diamandis EP, Loening SA, Dietel M, et al. High expression of KLK14 in prostatic adenocarcinoma is associated with elevated risk of prostate-specific antigen relapse. Tumor Biology. 2008; 29(1): 1-8.

275. Yousef GM, Stephan C, Scorilas A, Ellatif MA, Jung K, Kristiansen G, et al. Differential expression of the human kallikrein gene 14 (KLK14) in normal and cancerous prostatic tissues. The Prostate. 2003; 56(4): 287-292.

276. Gratio V, Loriot C, Virca GD, Oikonomopoulou K, Walker F, Diamandis EP, et al. Kallikrein-related peptidase 14 acts on proteinase-activated receptor 2 to induce signaling pathway in colon cancer cells. The American journal of pathology. 2011; 179(5): 2625-2636.

277. Yau M-K, Liu L, Fairlie DP. Toward drugs for protease-activated receptor 2 (PAR2). Journal of medicinal chemistry. 2013; 56(19): 7477-7497.

278. Adams MN, Pagel CN, Mackie EJ, Hooper JD. Evaluation of antibodies directed against human protease-activated receptor-2. Naunyn-Schmiedeberg's archives of pharmacology. 2012; 385(9): 861-873.

279. Talieri M, Li L, Zheng Y, Alexopoulou D, Soosaipillai A, Scorilas A, et al. The use of kallikrein-related peptidases as adjuvant prognostic markers in colorectal cancer. British journal of cancer. 2009; 100(10): 1659-1665.

280. Riley LK, Rupert J. Evaluation of patients with leukocytosis. American family physician. 2015; 92(11): 1004-1011.

281. Walaa Fikry M. Lactate Dehydrogenase (LDH) as Prognostic Marker in Acute Leukemia" Quantitative Method". J Blood Disord Transfus. 2017; 8: 1-8.

Appendices

Appendices

Appendix A. Equipment used in the study.

Equipment	Company	Origin
Alcohol Pad	Sugama	China
Aluminum Foil	Sanita	Lebanon
Analytical Balance	Kern Sohn	Germany
Biological Safety Cabinet & Clean Benches	Thermo Scientific	USA
Biophotometer	Eppendorf	Germany
Blood Transportation Box	Krew	India
Conical Flasks	Pyrex	Germany
Deep Freezer (-20 °C)	GFL	Germany
Deep Freezer (-70 °C)	GFL	Germany
Deionizer Nanopure	Thermo Scientific	USA
Digital Camera	Canon	Japan
Disposable Syringe	Set Medical	Germany
EDTA Tube	VACUTEST	Italy
Electronic Stopwatch	Optima	Japan
Electrophoresis Gel Tank	Analytik Jena	Germany
Electrophoresis Power Supply	Analytik Jena	Germany
Eppendorf Tubes	Accumax	India
Gel Documentation System	Cleaver	UK
Graduated Cylinder	Isolab	Germany
Hot Plate Magnetic Stirrer	Roth	Germany
Ice Maker	Scotsman	USA
Microcentrifuge	VWR	Germany
Microwave	Sharp	UK
Multicentrifuge	Heraeus	Germany
Nitrile Gloves	Avedo safety	Greece
Oven	Binder	Germany
Paint Markers	Staedtler	Germany
Parafilm Tape	Sigma Aldrich	USA
PCR Tubes	Accumax	India
pH-Meter	Knick	Germany
Precision Micropipettes	Eppendorf	Germany
Printer	Canon	Japan
Racks	Eppendorf	Germany
Refregirated Centrifuge 5417R	Eppendorf	Germany
Refrigerator (4.0 °C)	Haier	China
Rotor Gene Q Cycler	Qiagen	Germany
Spatula Spoon	Usbeck	Germany
Sterile Cotton	LanYuhan	China

APPENDICES

Applied Biosystems	Singapore
Memmert	Germany
Eppendorf	Germany
Accumax	India
Indiamart	India
Cleaver	UK
Cleaver	UK
Indiamart	India
Stuart	UK
Memmert	Germany
	Applied Biosystems Memmert Eppendorf Accumax Indiamart Cleaver Cleaver Indiamart Stuart Memmert

Appendix B. Kits and reagents used in the study.

Kits and Reagents	Company	Origin
2X SuPrimeScript RT Premix (SR-3000) Kit	GeNet Bio	South Korea
Absolute Ethanol	Merck	Germany
Agarose	Scharlau	Spain
Agarose Gel Loading Dye	GeNet Bio	South Korea
Boric Acid (MW=61.83 g/mol)	Scharlau	Spain
Deionized Sterile Distilled Water	Bioneer	South Korea
DNA Ladder	GeNet Bio	South Korea
Ethidium Bromide	Promega	USA
Nuclease-Free Water	Ambion	USA
OnePCR TM Ultra (PCR Master Mix) Kit	GeneDireX	USA
Prime PrepTM Blood RNA Extraction Kit	GeNet Bio	South Korea
Primers	Macrogen	South Korea
Rotor-Gene SYBR Green PCR Kit	Qiagen	Germany
EDTA Disodium Salt Dihydrate (MW=372.24 g/mol)	Promega	USA
Tris Base (MW=121.14 g/mol)	Promega	USA
Water, DEPC Treated	GeNet Bio	South Korea
-Mercaptoethanol	AppliChem	Germany

Appendix C. Ethical committee approval.

The Ethical committee of the College of Medicine should fill this field.

Ethical committee of College of Medicine has met to assess the plan and suggestions of the postgraduate and scientific committees regarding the research project of:

PhD student: Shwan Majid Ahmad

Title of the project: Human kallikrein-related peptidase associated with leukemia

In the field of **Biochemistry** in the specification of **Clinical Biochemistry and Molecular Biology** under supervision of:

Supervisor: Assistant professor, Dr Basima Sadiq Ahmed Jaff- PhD in Clinical Biochemistry,

University of Sulaimani- College of Pharmacy- Department of Clinical Biochemistry

Co-Supervisor: Lecturer, Dr Karzan Ghafur Khidhir- PhD & Post Doctorate in Molecular Genetic-University of Sulaimani- College of Science- Biology Department

As a result, the committee has decided to approve the PhD project.

Members of the ethical committee of College of Medicine:

55 No: Date: 17-9-2017 Ass. Prof. Dr. Bakhfig Mohamed Mahmoud Head of Committee Dr. Saced A.Latteef A.Kareen Ass.Prof. Ass.Prof. Dr. Farhad M. Abdulkarim Barzinji nber Member C Ass. Prof. Dr. Tavga Abred Aziz of. Dr. Mohamad Rasheed Ameen Member Member Dr.Sardar Rashid Hama Salih nwar Aboubaker Kareem Dr M ember Member w Dr. Dyary Hiewa Othman Dr. Fattah Hama Raheem Fattah Member Member UNIVERSITY OF SULAIMANI COLLEGE OF MEDICINE COMMITTEE ETHIC

APPENDICES

Appendix D. Consent form.

Dear Sir/ Madam

I am (Shwan Majid Ahmad), PhD student in Clinical Chemistry- College of Medicine- University of Sulaimani, my research protocol is titled: Human Kallikrein-related Peptidase associated with Leukemia.

To perform this Ph.D. study I need to collect blood samples from pediatric age individuals: patients diagnosed with leukemia before and after treatment, and healthy control individuals. The project has been approved by each of the Scientific and Ethical Committee at the College of Medicine, The Directorate of Health in Sulaimani Governorate, and the Hiwa Cancer Hospital Scientific Committee.

I would like to ask for your agreement on the participation of your child in this study. His/her name and data will be kept confidential.... Kind Regards

Agreement and Participation:

I have read this consent form and voluntarily I agree and sign to participate our child

(.....) in the study.

Name:

Signature:

Relation to the child:

Date:

Mobile Number:

Study Code:

The researcher: Shwan Majid Ahmad

Appendix E. Questionnaire.

Date of interview:	
Study code:	Name:
Date of Birth:	Age:
Sex:	Blood group:
Ethinicity:	Residence address:
Occupation:	Mobile Number:
Any chronic disease: Any hematological disease:	
Family history of cancer/hematologica Below to be filled for the patients at Hiwa Can	l diseases: acer Hospital who enrolled in the study
Patient ID:	Treating doctor:
Date of admission:	Date of diagnosis:
Diagnosis type:	Diagnosis sub-type:
Date of the blood collections for this study Date of the first sample: Date of the second sample: Date of the third sample:	£

This data is kept confidential and it is only used for research purposes.... Kind regards.... Shwan Majid Ahmad

Appendix F. cDNA synthesis cycling conditions.

Appendix G. Conventional RT-PCR cycling conditions.

Appendix H. Melting curve analysis.

Guick Start	
1. Rotor Selection 2. Confirm Profile	
New Open Save As Help	
The run will take approximately 61 minute(s) to complete	The graph below represents the run to be performed :
Click on a cycle below to modify it ;	
Hold Cycling	Insert after
Melt	Intert before
Rising by 1	on first step, s
Gain Optimisation Ø Optimise gain before melt on all tubes	
The gain giving the highest fluorescence less than 7 will be selected.	
will be selected.	
< <u>Back</u> Save <u>Template</u> <u>Start Run</u>	Cancel

Appendix I. Originality report.

UoS		
ORIGINA	ALITY REPORT	
2 SIMILA	1% 17% 11% 5% INTERNET SOURCES PUBLICATIONS STUDENT	PAPERS
PRIMAR	Y SOURCES	
1	Submitted to University of Kufa Student Paper	1 %
2	hdl.handle.net	1 %
3	academic.oup.com	1 %
4	www.degruyter.com	1 %
5	hydra.hull.ac.uk Internet Source	<1%
6	Mavridis, Konstantinos, Konstantinos Stravodimos, and Andreas Scorilas. "Quantified KLK 15 Gene Expression Levels Discriminate Prostate Cancer From Benign Tumors and Constitute a Novel Independent Predictor of Disease Progression : Biomarker Capacity of mRNA in CaP", The Prostate, 2013. Publication	<1%
7	www.scribd.com	<1%
Appendix J. Publications relating to the present project

2021-2022 Impact Factor = 3.061

Prospective quantitative gene expression analysis of kallikrein-related peptidase KLK10 as a diagnostic biomarker for childhood acute lymphoblastic leukemia

Shwan Majid Ahmad¹, Basima Sadq Ahmed², Karzan Ghafur Khidhir¹ and Heshu Sulaiman Rahman*

Department of Biochemistry, College of Medicine, University of Salaimani, Sulaimaniyah, Iraq Department of Biochemistry & Clinical Chemistry, College of Pharmacy, University of Sulaimani, Sulaimaniyah, Iraq

¹ Department of Biology, College of Science, University of Sulaimani, Sulaimaniyah, Iraq

* Department of Physiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq

ABSTRACT

Background. The most common malignancy in children is acute lymphoblastic leukemia (ALL). This study aimed to explore KLK10 mRNA expression as a potential diagnostic biomarker for ALL in children and to examine the effect of chemotherapy on KLK10 mRNA expression following the induction and after three months of receiving chemotherapy.

Methods. In this prospective study, total RNA was extracted from blood samples of 23 pediatric ALL patients on diagnosis, after one month and three months of receiving chemotherapy. Healthy pediatric volunteers (n = 12) were selected as control individuals. After cDNA synthesis, KLK10 mRNA gene expression levels were quantified using quantitative real-time PCR (qRT-PCR).

Results. KLK10 mRNA expression levels were significantly decreased in leukemic cells compared to their levels in cells of normal blood samples (p = 0.0001). KLK10 expression levels in ALL patients after one month and three months of receiving chemotherapy decreased compared to normal blood samples (p < 0.0001 and p =0.0175 respectively). The expression level of KLK10 mRNA in ALL patients after one month of chemotherapy was decreased compared to their level on diagnosis (p = 0.4413). KLK10 mRNA expression levels in ALL patients after three months of chemotherapy were increased compared to their level on diagnosis (p = 0.0602). The ROC curve illustrated that KLK10 mRNA expression could very efficiently discriminate ALL patients from normal counterparts (AUC=0.886, 95% CI [0.7720-1.000], SE = 0.0582, p = 0.0004).

Conclusion. KLK10 mRNA expression could serve as a potential diagnostic molecular biomarker for ALL in children.

Subjects Biochemistry, Molecular Biology, Oncology, Pediatrics, Medical Genetics Keywords Acute lymphoblastic leukemia, Chemotherapy, Diagnostic biomarker, Kallikrein-related peptidase, KLK10, Prospective study, Quantitative real-time PCR

Distributed under

How to clin this article Ahmad SM, Ahmad RS, Khidhir KG, Bahman HS, 2022. Prospective quantitative gene expression analysis of kalffarem-related peptidase KTK/0 as a diagnostic biomarker for childhood acute hymphrokastic leukenia. Perrf HBel/3489 http://doc.org/10.2717/pervl.13189

Submitted 21 January 2022 Accepted 3 May 2022 Published 31 May 2022 Corresponding author

Shwan Majid Ahmad. shwan majid@univsul.edu.iq. shwanchemistry83@yaboo.com

Academic editor Vladimir Uversky

Additional Information and Declarations can be found on pape 11

DOI 10.7717/peerj.13489

Copyright 2022 Ahmud et al.

Creative Commons CC-BY 4.0

(AUC=0.851, 95% CI=0.7087-0.9931, SE=0.0726, p=0.0012) على التوالى. أظهر تحليل الانحدار اللوجستي أحادي المتغير، أن الجينات الثلاثة يمكن أن يكون مؤشراً موثوقاً للتنبؤ ب ALL

OR=0.2289, 95% CI=0.0557-0.9399, *p*=0.0115) و

(OR=0.0228, 95% CI=0.0008851-0.2299, *p* 0.0001)

(OR=0.0716, 95% CI= 0.003912-0.4610, p=0.0002) على التوالى. في المرضى ALL الذين تلقوا (OR=0.0716, 95% CI= 0.003912-0.4610, p=0.0002) العلاج الكيميائي لمدة شهر واحد، إ نخفض مستويات التعبير mRNA من MRNA من *KLK10* مقارنة بالمرضى الذين تم p=0.04413 (p=0.04413) *KLK6* mRNA مقارنة بالمرضى الذين تم p=0.04413 (p=0.04413) (p=0.04413) بينما زاد التعبير *KLK6* mRNA (p=0.04413) (p=0.

الاستنتاجات: كشفت هذه الدراسة أ نخفاض مستويات التعبير mRNA لكل من KLK6 و KLK10 و KLK14 بشكل كبير للأطفال المرضى ALL مقارنة بللأصحاء (مجموعة التحكم)، بأنها ذات علاقة بالتشخيص. لذا يمكن استخدام مستويات التعبير mRNA من KLK6 و KLK14 و KLK14 كمؤشر بيولوجي جزيئي في تشخيص و تنبؤ المرضى ALL. الغلفية : سرطان ابياض الدم الليمفاوي الحاد (ALL) هو أكثر أنواع السرطانات إنتشارا عند الأطفال بسبب التكاثر السريع خلايا لمفاوية الغير الناضجة في الدم ونخاع العظم والأنسجة الأخرى. فى معدل البقاء على قيد الحياة لمدة خمس سنوات يتم علاج أكثر من 80 من الأطفال المصابين. بالرغم من هذه النسبة العالية أن المؤشرات الحيوية الجزيئية مطلوبة للتنبؤ بالسرطان و تحديد المخاطر المرضى والنتائج العلاجية. أن KLKs كاليكرين ذات الصلة پيپتديز هي مجموعة مكونة من خمسة عشر سيرين پروتينيز فريدة، تتميز بأنها أطول عنقود غير منقطع جينوم الأنسان تقع على الكروموسوم 19 و توجد في الأنسجة وسوائل الجسم، و تؤثر على الوظائف الفسيولوجية. أن تعبير الغير الطبيعى لهذه على الكروموسوم 19 و بالأمراض و السرطانات و درست تأثيراتها فى علم الأورام السريري، حيث و 'جدت علاقة وثيقة بينها و بين أنتيجين الخاص بالأمراض و السرطانات و درست تأثيراتها فى علم الأورام السريري، حيث و 'جدت علاقة وثيقة بينها و بين أنتيجين الخاص

الأهداف: يهدف البحث الى تحديد مستويات التعبير mRNA ل KLK6 و KLK10 و KLK14 و KLK14 كمؤشر بايولوجي فعال للتشخيص و التكهن لسرطان الدم الليمفاوي عند الأطفال، وتقييم تأثير العلاج الكيميائي على ملف تعبيرهم بعد شهر وثلاثة أشهر من العلاج الكيميائي.

المواد و الطرق: هذا البحث دراسة تنبؤيه، تحليلية، مبنية على الملاحظة، و تحكيم الحالات المرضية و الغير المرضية. تمت هذه الدراسة على أطفال تتراوح أعمارهم بين (1 - 15) سنة، 23 طفلاً مصابا بالمرض ALL حديثًا وافدين في مستشفى هيوا للسرطان فى مدينة السليمانية. و تم اختيار 12 متطوعا كأطفال أصحاء كمجموعة تحكم. تم جمع عينات الدم من مرضى ALL في ثلاث فترات مختلفة: عند التشخيص بـ ALL، بعد شهر وثلاثة أشهر من العلاج الكيميائي. تم عزل أجمالي الحمض النووي الريبيRNA من عينات الدم ، و تحضير CDNA، و من ثم تحليل مستويات تعبير RRNA من *KLK6 و من ثم ERD*. و من ثم تحليل مستويات تعبير ALL من *KLK6 و الديبي*

النتائج: إنخفض مستويات تعبير ل mRNA من KLK6 و KLK14 و KLK14 بشكل كبير في عينات الدم المأخوذة للأطفال المرضى ALL مقارنة بدم الأصحاء، و تم أيجاد علاقة احصائية مهمة (p=0.002 وp=0.0007 و p=0.0007 على التوالى). إنخفضت مستويات تعبير mRNA من KL66 و KLK10 و KLK14 بشكل كبير في المرضى الذين تلقوا العلاج الكيميائي لمدة شهر مقارنة بمستوياتهم في عينات الدم الأطفال الأصحاء، و ايجاد علاقة احصائية مهمة (p=0.00292 و 0.0000 و 0.0001 على التوالى). كما إنخفض تعبيرات الجينات بشكل كبير في المرضى الذين تلقوا العلاج لمدة ثلاثة أشهر مقارنة بمستوياتهم في عينات الدم الأطفال الأصحاء، و ايجاد علاقة احصائية مهمة الذين تلقوا العلاج لمدة ثلاثة أشهر مقارنة بمستوياتهم في عينات الدم الأطفال الأصحاء و تم ايجاد المقد احصائية مهمة الذين تلقوا العلاج لمدة ثلاثة أشهر مقارنة بمستوياتهم في عينات الدم الأطفال الأصحاء و تم ايجاد الملاقة احصائية مهمة الذين تلقوا العلاج لمدة ثلاثة أشهر مقارنة بمستوياتهم في عينات الدم الأطفال الأصحاء و تم ايجاد المقد احصائية مهمة الذين تلقوا العلاج لماة ثلاثة أشهر مقارنة بمستوياتهم في عينات الدم الأطفال الأصحاء و تم ايجاد المائية مهمة الذين تلقوا العلاج لماة لمائية أشهر مقارنة بمستوياتهم في عينات الدم الأطفال الأصحاء و ما يجاد المائية مهمة الذين تلقوا العلاج لمائية أشهر مقارنة بمستوياتهم في عينات الدم الأطفال الأصحاء و ما يجاد المائية مهمة الذين تلقوا العلاج لمائية أشهر مقارنة بمستوياتهم في عينات الدم الأطفال الأصحاء و ما يجاد المائية مهمة (p=0.0038 وp=0.0038 مائين المرضى الموائى). كشف تحليل منحنى ROC عن القيمة التشخيصية الهامة التعبير KLK6 و KLK10 للتمييز بين المرضى ALL و الأصحاء

(AUC=0.822, 95% CI=0.6735-0.9713, SE=0.076, p=0.0029) و

(AUC=0.886, 95% CI=0.7720-1.000, SE=0.0582, p=0.0004) و

التحليل الكمي للتعبير الجيني للكاليكرين ذات الصلة پيپتديز KLK6 و KLK10 و KLK14 في سرطان الدم الليمفاوي الحاد عند الأطفال

اطروحة مقدمة الى مجلس كلية الطب فى جامعة السليمانية كجزء من متطلبات نيل شهادة الدكتوراه في الكيمياء السريرية

من قبل

شوان ماجد احمد محمود

بأشراف

الأستاذ المساعد

د.باسمه صادق احمد جاف

الأستاذ المساعد

د.کارزان غفور خضر

1443 هجری 2022 میلادی

2722 كوردى

p 0.0001 p 0.0001 p 0.0001 و 0.0001 p 0.0001 يەك). ھەروەھا ئاستى دەربېرىنى بۆھىلاەكان ئە نەخۆشانى ALL كە بۆ ماوەى <math>p = 0.0001 سى مانگ چارەسەرى كىمياويان وەرگرتوە نزمترە بە بەراورد بە نمونەى خوينى ساغ، نرخى ئاماريان كاريگەرە (p = 0.0038 سى مانگ چارەسەرى كىمياويان وەرگرتوە نزمتره بە بەراورد بە نمونەى خوينى ساغ، نرخى ئاماريان كاريگەرە (p = 0.0038 سى مانگ p = 0.0078 وp = 0.00175 يەكارى چەماوەى ROC گرنگى تواناى بەھاى دەستنىشانكردنى ئاستى دەربېرىنى ساغ، نىرخى ئاماريان كاريگەرە (p = 0.0038 مانگ p = 0.00175 وp = 0.00175 مانگ p = 0.00175 كەرنى ئاستى دەربېرىنى RNA كەرنى ئاستى دەربېرىنى RNA يەربېرىنى RNA يەربېرىنى RNA يەربېرىنى كەربېرىنى كەربېرى كەربېرىنى كەربېرى كەربېرىنى كەربېرىنى كەربېرىنى كەربېرىنى كەربېرىنى كەربېرى ك

(AUC=0.822, 95% CI=0.6735-0.9713, SE=0.076, p=0.0029) و

(AUC=0.886, 95% CI=0.7720-1.000, SE=0.0582, p=0.0004)

(AUC=0.851, 95% CI=0.7087-0.9931, SE=0.0726, p=0.0012) پەك بە دواى يەك. شىكارى (AUC=0.851, 95% CI=0.7087-0.9931, SE=0.0726, p=0.0012) پاشۆچونى لۆجستى يەك گۆراو ئەوەى پيشاندا كەمبونەوەى ئاستى ھەر سى بۆھىللەكە ئەوانەيە وەك زىندەنىشاندەرىكى پېشېينىكەر بەكاربىل بۇ دۆخى نەخۇشانى ALL (OR=0.2289, 95% CI=0.0557-0.9399, p=0.0115) (OR=0.2289, p=0.012) (OR=0.2289, p=0.0128) (O

و (OR=0.0228, 95% CI=0.0008851-0.2299, p 0.0001)

(OR=0.0716, 95% CI= 0.003912-0.4610, p=0.0002) يەك بە دواى يەك. ئە نەخۇشانى ALL كە ماوەى يەك مانگ چارەسەرى كىمياويان وەرگرتبوو ئاستى دەربېرىنى mRNA mathing mathing وKLK14 كەمى كرد بە بەراورد بە نەخۇشانى تازە دەستنىشانكراو (p=0.04413 و p=0.0039 و p=0.04413 بە نەخۇشانى دەربېرىنى بە نەخۇشانى تازە دەستنىشانكراو (p=0.04413 و p=0.0039 و p=0.04413 بە دەراى يەك)، ئە كاتىكدا ئاستى دەربېرىنى mRNA دەربېرىنى mRNA وەرmRNA كەمى كرد بە بەراورد mRNA وەرmRNA كەمى كرد بە بەراورد mRNA بە نەخۇشانى تازە دەستنىشانكراو (p=0.04413 و p=0.0039 و mRNA كەمى كرد بە بەراورد بە نەخۇشانى دەربېرىنى وەرگرتبوو ئاستى دەربېرىنى mRNA كەمى كرد بە بەراورد mRNA وەرmRNA يە دەربېرىنى mRNA وەرmRNA يە دەربېرىنى mRNA يە دەربېرىنى دەربېرىنى mRNA يە دەربېرىنى mRNA

دەرئە نجامەكان : ئەم توێژينەوەيە ئەوەى دەرخست ئاستى دەربرينى mRNAى *KLK6 و KLK10 و KLK14 دەربرينى KLKA دەرئە نجامەكان : ئەم توێ*ژينەوەيە ئەوەى نيشاندا ئەم مندالأنى نەخۆشى ALL بە رێژەيەكى بەرچاو كەمدەكا بە بەراورد بە مندالأنى گروپى كۆنترۆڭ، ئەمەش ئەوەى نيشاندا ئەم بۆھێلأنە گرنگى دەستنيشانكردنيان ھەيە. بۆيە ئاستى دەربرينى mRNAى *KLK6 و KLK10 و KLK14 دە*تواندرێت بەكاربەيێنرێت وەك زيندەنيشاندەرێكى گەردى بۆماوەيى ئە دەستنيشانكردن و پێشبينيكردنى ALL. پاشخان: شيّر په نجهى كتوپرى خرۆكەى سپى خويّن (ALL) بەربلأوترين شيّر په نجه دەستنيشانكراوەكانە ئە مندالأن. بەھۆى ئەپادەبەدەر زيادبونى ئىمفەخانە پيّنەگەيشتوكان ئە خويّن و مۆخى ئيّسك و شانەكانى تر. ئە ريّژەى پيّنج سال مانەوە ئە ژياندا، زياتر ئە 80٪ نەخۆشانى مندالأن چارەسەر دەكريّن. سەرەپاى بەرزى ئەم ريّژەيه، زيندەنيشاندەرى بۆماوەيى گەردى ھەستيار و تايبەت پيويستن بۆ دەستنيشانكردن و پيّشبينيكردنى شيّر پە نجە وه باشتر دياريكردنى ئاستى مەترسى و دەرئە نجامەكانى چارەسەر. كاليكرينى پەيوەنديدار بە پيّپتيدەيز KLKs پيّكهاتوە ئە كۆمەئەيەكى پانزە ئەندامى سەربەخۆى دەرداوى پرۆتيەيزى سيّرين، بەوە ناسراون دريّژترين كۆمەئەى نە پچراوى جينۆمى مرۆڤن دەكەونە سەر كۆمۆسۆمى ژمارە 19. يرۆتيەيزى سيّرين، بەوە ناسراون دريّژترين كۆمەئەى نە پچراوى جينۆمى مرۆڤن دەكەونە سەر كۆمۆسۆمى ژمارە 19. KLKs ئە كاليكرينانە پەيوەنديدان ھەيە بە زۆريّك ئە نەخۆشى و شەرمانە فسيۆلۆجيەكان. دەربرينى نائاسايى ئەم كاليكرينانە پەيوەنديان ھەيە بە زۆريْك ئە نەخۆشى و شيّر پە نجە. بەكارھيّنان كاليكرينەكان ئە كلينكى شيّرينى نەم كاليكرينانە پەيوەنديان ھەيە بە زۆريْك ئە ئەنخۇشى و شيّرينان كاليكرينەكان ئەكەردىتە بەھەر بالاكى يە ئامراون. ئەنتيجينى تايبەت بە پرۆستات (PSA/KLK3) ئە كۆرمۇنى كاليكرينەكان ئە كلينكى شيّر پە نجەزانى دا ئاسراون. ئەنتيجينى تايبەت بە پرۆستات (PSA/KLK3) ئە گرنگترين كاليكرينەكان بەكاردىت ئە پىكىزىنى كەيدانە يەھەردىيان ھەيە بە زۆرىك ئە نەخۇشى و شيّر پە نجە. بەكارھىيّنانى ئە شىر پە نجەي خويندا نوييە، وە ئىيكەزلىنى دەگەر ئەوشدا، شيكارى بۆماوەيى گەردى ئەندامەكانى تىرى خىزانى KLKs

ئاما نجهکان : ئەم توێژینەوەیە ئاما نجی دیاریکردنی ئاستی دەربرینی mRNA ی *KLK6 و KLK14 و KLK1 و KLK1 و KLK1 و*ەك زیندەنیشاندەریکی گەردی بۆماوەیی له دەستنیشانکردن و پیٚشبینیکردنی شیّر په نجهی کتوپری خرۆکەی سپی خویّن له مندالان، هەروەها هەلسّەنگاندنی کاریگەری چارەسەری کیمیاوی له پرۆفایلی دەربرینەکانیان دوای یەك مانگ وه سیّ مانگ له وەرگرتنی چارەسەری کیمیاوی.

كەرەستە و رِيْگاكانى تويْژينەوە: ئەم تويْژينەوەيە ئىكۆلىنەوەيەكى داھاتويى چاوەرىكردنە وە شىكارى چاودىركردنە ئە كەسى نەخۆش و ساغ. بەژداربوانى ئەم تويْژينەوەيە مندالانى تەمەن 1 بۆ 15 سالان بوون، 23 نەخۆشى تازە دەستنيشانكراوى ALL ئە بەشى مندالان ئە نەخۆشخانەى ھيوا ئە شارى سليمانى، ھەروەھا 12 مندالى ساغ وەك گروپى كۆنترۆل بەژداربون. نمونەى خوين ئە توشبوان بە ALL وەرگيران ئە سى كاتى جيا دا: ئە كاتى دەستنيشانكردنى نەخۆشيەكەيان، ھەروەھا دواى يەك مانگ وە سى مانگ ئە وەرگيران ئە سى كاتى جيا دا: ئە كاتى دەستنيشانكردنى بياكرايەوە ئە نمونەى خوينەكى مانگ وە سى مانگ ئە وەرگيران ئە سى كاتى جيا دا: ئە كاتى دەستنيشانكردنى *KLK6* بەزەربوينى قەروەھا دواى يەك مانگ وە سى مانگ ئە وەرگيران ئە سى كاتى جيا دا: ئە كاتى دەستنيشانكردنى بياكرايەوە ئە نمونەى خوينەكان وە مى مانگ ئە دوستكرا، پاشان شيكارى ئاستى دەربرينى مەستاكى و *KLK6* بەرداربون. ئەرەنەي ئوينەكان وە كەر مانگ ئە دوستكرا، پاشان شيكارى ئاستى دەربرينى مەستاكى و *KLK6* بەركرايەوە ئە نمونەي خوينەكان وە يەكە دەركەر دوستكرا، پاشان شيكارى ئاستى دەربرينى مەستاكى و *KLK10* بۇكرايە بەرداربون.

ALL و KLK4 له نمونهی خویّنی مندالی نه خوّشی KLK6 و KLK14 و KLK14 له نمونهی خویّنی مندالی نه خوّشی ALL نزمتره به بهراورد به نمونهی خویّنی مندالی نه خوّشی p=0.000 و p=0.002 و p=0.000 و p=0.002 و p=0.002 و ELK6 و kLK6 و kLK14 له نه خوّشانی ALL که بوّ ماوهی یهك مانگ دوای یهك). ئاستی دهربرینی RNA که بوّ ماوهی یهك مانگ KLK14 و KLK14 و KLK14 و KLK14 و mRNA (mRNA (mRNA). ئاستی دهربرینی mRNA و mRNA و mRN4 و mRN4 (mRN4). mRN4 (mRN4 (mRN4) (mRN4) (mRN4). mRN4 (mR04) (mR04)

شـيكارى چەندێتى دەربېرينە بۆھێٽيەكانى كـاليكرينى پەيوەنديدار بە پێپتيدەيز KLK6 و KLK14 و KLK14 نە شێر پە نجەى كتوپړى خرۆكەى سپى خوێن نە مندالان

نامـەيەكە پێشكەشكراوە بە ئە نجومەنى كۆلێجى پزيشكى زانكۆى سلێمانى وەك بەشێك ئە پێداويستيەكانى بەدەستھێنانى بروانامەى دكتۆرا ئە كلينكەل ٚكمسترى

لەلايەن

شوان ماجد احمد محمود

بەسەرپەرشتى

پرۆفیسۆری یاریدەدەر د.باسمه صادق احمد جاف

پرۆفیسۆری یاریدمدمر د.کارزان غفور خضر

1443 كۆچى

2022 زاينى

2722 كوردى